

Section 3: The product and quotient rules

Exercise level 2

- 1. (i) Using the product rule, differentiate $x(2x-1)^2$.
 - (ii) Expand $x(2x-1)^2$. Then find the derivative of the resulting expression.
 - (iii) Verify that your answers for parts (i) and (ii) are algebraically equivalent.
- 2. (i) Using the quotient rule, differentiate $\frac{5x^2}{\sqrt{x+3}}$.
 - (ii) Rewrite $\frac{5x^2}{\sqrt{x+3}}$ as $5x^2(x+3)^{-\frac{1}{2}}$ and differentiate it using the product rule.
 - (iii) Show your answers are algebraically equivalent.
 - (iv) Explain why the function is not defined for $x \le -3$.
- 3. $y = x\sqrt{2x+5}$ for $x \ge -2.5$. Show that $\frac{dy}{dx}$ is of the form $\frac{ax+b}{\sqrt{2x+5}}$, where *a* and *b* are integers.
- 4. $y = \frac{x}{\sqrt{3x-2}}$ for $x > \frac{2}{3}$. Show that $\frac{dy}{dx}$ is of the form $\frac{ax+b}{(3x-2)^{\frac{3}{2}}}$, where *a* and *b* are rational numbers.
- 5. Find the exact coordinates of the turning point of the curve $y = x\sqrt{1-x}$.
- 6. Given that $y = \frac{x}{2x-1}$ for $x \neq \frac{1}{2}$, show that $\frac{dy}{dx} = -\frac{1}{(2x-1)^2}$. Deduce that the gradient of the curve is always negative for $x \neq \frac{1}{2}$.
- 7. Find the equation of the tangent to $y = x^2 \sqrt{2x-1}$, $x > \frac{1}{2}$, at the point where x = 1.
- 8. Find the coordinates of the turning points of the curve $y = \frac{x^2}{x-1}$.
- 9. Find the gradient of the curve $y = \frac{\sqrt{2x-1}}{x}$, $x > \frac{1}{2}$, at the point where x = 2.
- 10. (i) Given that $w = \frac{1+x}{1-x}$, find $\frac{dw}{dx}$.
 - (ii) Using this result, and the chain rule, show that if $y = \left(\frac{1+x}{1-x}\right)^3$,

then
$$\frac{dy}{dx} = \frac{6(1+x)^2}{(1-x)^4}$$

