

Section 2: The chain rule

Exercise level 1

1. Use the chain rule to differentiate the following functions.

(i)
$$y = (5x-2)^5$$
 (ii) $y = (2+5x)^{-1}$
(iii) $y = (1-3x)^7$ (iv) $y = (1-2x)^{-3}$

- 2. Using the chain rule, differentiate with respect to *x*: (i) $(x^{2}+1)^{4}$ (ii) $(3x^{2}+5)^{-3}$ (iii) $(5-x^{3})^{4}$ (iv) $(7-4x^{2})^{-1}$
- 3. Differentiate the following functions.

(i)
$$y = (5x-2)^{\frac{1}{2}}$$
 (ii) $y = (2-5x)^{-\frac{1}{3}}$
(iii) $y = (2+3x)^{-\frac{2}{3}}$ (iv) $y = (1-2x)^{\frac{3}{2}}$

- 4. Using the chain rule, differentiate with respect to *x*:
 - (i) $(3x^2+1)^{\frac{4}{3}}$ (ii) $(3-2x^2)^{\frac{3}{5}}$ (iii) $(5+2x^3)^{-\frac{1}{2}}$ (iv) $(5-2x^2)^{-\frac{2}{5}}$

5. Differentiate with respect to x:
(i)
$$\sqrt{6x-5}$$
 (ii) $\sqrt[3]{(x^2-2)}$

- 6. Differentiate with respect to x: (i) $\frac{1}{3x-2}$ (ii) $\frac{5}{x^2-4x-3}$
- 7. Differentiate with respect to *x*:

(i)
$$\frac{1}{\sqrt{x^3 + 3x}}$$
 (ii) $\frac{3}{\sqrt[3]{x^2 + 1}}$

8. Find the gradient of the curve $y = \frac{1}{2x-1}$ at the point (1, 1).

- 9. Find the gradient of the curve $y = \sqrt{3x^2 3x 2}$ at the point (2, 2).
- 10. Find the gradient of the curve $y = \frac{1}{\sqrt{2x-1}}$ at the point (1, 1).

