Edexcel A level Maths Further differentiation

Section 1: Differentiating exponentials and logarithms

Exercise level 3

1. (i) Express 2^{x} in the form $\mathrm{e}^{x \ln a}$, for a suitable constant a.
(ii) Hence, using the chain rule, find the derivative of $y=2^{x}$, expressing $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as a multiple of 2^{x}.
(iii)Express $y=x^{x}$ as an exponential, and hence find the derivative of $y=x^{x}$, $x>0$. Also find the exact coordinates of the stationary point on the curve.
2. (i) Given $y=\ln x$, express x as a function of y and hence prove that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$.
(ii) Given $y=\ln (\ln x)$, use the chain rule to find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(iii)By first simplifying $y=\ln \left(\ln x^{x}\right)$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\ln (\mathrm{e} x)}{x \ln x}$.
3. (i) Given that $\mathrm{f}(x)=\ln (1+x)-x+\frac{1}{2} x^{2}, x \geq 0$, find $\mathrm{f}^{\prime}(x)$.
(ii) Show that $\mathrm{f}^{\prime}(x)>0$ for $x>0$, and deduce that $\ln (1+x)>x-\frac{1}{2} x^{2}, x>0$.
(iii)Similarly show that $\ln (1+x)<x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}, x>0$.
(iv) Hence show that $\frac{3}{8}<\ln \frac{3}{2}<\frac{5}{12}$.
