

Section 1: Differentiating exponentials and logarithms

Exercise level 3

- 1. (i) Express 2^x in the form $e^{x \ln a}$, for a suitable constant *a*.
 - (ii) Hence, using the chain rule, find the derivative of $y = 2^x$, expressing $\frac{dy}{dx}$ as a multiple of 2^x .
 - (iii)Express $y = x^x$ as an exponential, and hence find the derivative of $y = x^x$, x > 0. Also find the exact coordinates of the stationary point on the curve.
- 2. (i) Given $y = \ln x$, express x as a function of y and hence prove that $\frac{dy}{dx} = \frac{1}{x}$. (ii) Given $y = \ln(\ln x)$, use the chain rule to find an expression for $\frac{dy}{dx}$. (iii) By first simplifying $y = \ln(\ln x^x)$, show that $\frac{dy}{dx} = \frac{\ln(ex)}{x \ln x}$.
- 3. (i) Given that $f(x) = \ln(1+x) x + \frac{1}{2}x^2$, $x \ge 0$, find f'(x). (ii) Show that f'(x) > 0 for x > 0, and deduce that $\ln(1+x) > x - \frac{1}{2}x^2$, x > 0. (iii)Similarly show that $\ln(1+x) < x - \frac{1}{2}x^2 + \frac{1}{3}x^3$, x > 0. (iv)Hence show that $\frac{3}{8} < \ln \frac{3}{2} < \frac{5}{12}$.

