Section 1: Differentiating exponentials and logarithms

Exercise level 2

1. If $\mathrm{f}(x)=\left(1+x^{2}\right) \mathrm{e}^{3 x}$, find $\mathrm{f}^{\prime}(x)$.
2. If $y=\mathrm{e}^{x^{2}} \ln x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
3. (i) Show that the derivative of 2^{x} is $2^{x} \ln 2$.
(ii) Hence find the derivative of $2^{3 x}$.
4. Find the exact coordinates of the turning point of the curve $y=x \ln x$. By finding $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, determine its nature.
5. Find the exact coordinates of the turning point of the curve $y=x \mathrm{e}^{-2 x}$. By finding $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, determine its nature.
6. Given that $y=\frac{\mathrm{e}^{x}}{\sqrt{1+2 x}}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x \mathrm{e}^{x}}{\sqrt{(1+2 x)^{3}}}$.
7. The temperature $T^{\circ} \mathrm{C}$ of the water in a kettle t minutes after boiling is modelled by the equation $T=20+80 \mathrm{e}^{-0.5 t}$. Find the initial rate of cooling, and the rate of cooling after 2 minutes.
