

Section 2: Differentiating trigonometric functions

Exercise level 3

- 1. (i) Given that $f(x) = \sin^2 x + \cos^2 x$, show that f'(x) = 0 for all x. (ii) By considering f'(0), deduce a well-known identity.
- 2. (i) Given $y = \arcsin x$, express x in terms of y, and hence find $\frac{dx}{dy}$ as a function of y.
 - (ii) Express $\frac{dy}{dx}$ as a function of x and hence find $\int \frac{1}{\sqrt{1-x^2}} dx$.
- 3. (i) Find $\frac{dy}{dx}$ for the function $y = \cos(\pi e^x)$.
 - (ii) Show that the stationary points occur when $x = \ln m$, where *m* is a non-negative integer.
 - (iii)Show that the distance between successive stationary points tends to 0 as $m \rightarrow \infty$.
 - (iv)Sketch the graph of $y = \cos(\pi e^x)$.

