Edexcel A level Maths Further differentiation

Section 2: Differentiating trigonometric functions

Exercise level 2

1. If $\mathrm{f}(x)=\mathrm{e}^{2 x} \tan x$, find $\mathrm{f}^{\prime}(x)$.
2. Show that $y=\sin x+2 \cos x$ has a stationary point when $\tan x=\frac{1}{2}$.

Given that $0<x<\frac{\pi}{2}$, find the exact value of y at this point.
[Hint: sketch a right angled triangle with short sides 1 and 2, and use this to find $\sin x$ and $\cos x$ given that $\left.\tan x=\frac{1}{2}\right]$
3. Given that $y=\sin 3 x$, show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-9 y$.
4. Differentiate $\sin ^{3} x$. Use your result to evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos x \mathrm{~d} x$.
5. The height x metres of water above a sand-bar t hours after noon on a certain day is modelled by the equation $x=5 \sin \frac{1}{2} t$.
(i) Calculate the height of the water at 2 p.m., and the approximate rate at which the water is rising at this time.
(ii) When is the water rising most rapidly, and at what rate?
6. A weight on the end of a spring, which is hanging vertically, is oscillating so that its height y metres above the floor after t seconds is given by:

$$
y=0.5+0.2 \sin (10 t) .
$$

(i) What are the greatest and least heights of the weight?
(ii) Find the speed of the weight after 0.5 seconds.

