Edexcel A level Maths Parametric equations

Section 1: Using parametric equations

Exercise level 3

1. The curve C has parametric equations
$x=\mathrm{f}(t)$ and $y=\mathrm{g}(t)$,
where $\mathrm{f}(t)=2 t^{2}-2$ and $\mathrm{g}(t)=t^{3}-t$.
(i) Sketch the graphs of $x=\mathrm{f}(t)$ and $y=\mathrm{g}(t)$ and hence find the range of values for x and y in the curve C .
(ii) Find the points where the curve C meets the line $y=x$.
(iii) Show that the Cartesian equation of the curve C is $8 y^{2}=x^{3}+2 x^{2}$. Use graphing software to sketch the curve.
2. The folium of Descartes (the Latin word folium means leaf) is defined by the equation $x^{3}+y^{3}=3 x y$.
The curve is shown in the diagram below.

Folium of Descartes
(i) Show that the curve is symmetric in the line $y=x$.
(ii) By using the substitution $y=t x$, show that the parametric equations of the curve are

$$
x=\frac{3 t}{1+t^{3}} \text { and } y=\frac{3 t^{2}}{1+t^{3}} .
$$

(iii) Find the points where the curve meets the line $y=x$.
(iv) By using implicit differentiation, show that the maximum point on the leaf (first quadrant) corresponds to $t=2^{\frac{1}{3}}$ and find the coordinates of the maximum point.
3. A curve has parametric equations $x=\cos ^{2} t, y=\frac{1}{2} \sin 2 t$, where $0 \leq y<\pi$.
(i) Show that the curve is a circle and find its Cartesian equation. Sketch the curve.
(ii) Indicate in your diagram the points on the circle for $t=0, t=\frac{\pi}{4}$ and $t=\frac{\pi}{2}$.
(iii) Given that θ is the angle at the centre of the circle between the x-axis and the line joining the centre and a point P on the circle, show that $\tan \theta=\tan 2 t$ for $0<t<\frac{\pi}{4}$ and $\tan \theta=-\tan 2 t$ for $\frac{\pi}{4}<t<\frac{\pi}{2}$.

