

Section 1: Using parametric equations

Exercise level 3

1. The curve C has parametric equations

x = f(t) and y = g(t),

where $f(t) = 2t^2 - 2$ and $g(t) = t^3 - t$.

- (i) Sketch the graphs of x = f(t) and y = g(t) and hence find the range of values for x and y in the curve C.
- (ii) Find the points where the curve C meets the line y = x.
- (iii) Show that the Cartesian equation of the curve C is $8y^2 = x^3 + 2x^2$. Use graphing software to sketch the curve.
- 2. The folium of Descartes (the Latin word *folium* means leaf) is defined by the equation $x^3 + y^3 = 3xy$.

The curve is shown in the diagram below.

Folium of Descartes

- (i) Show that the curve is symmetric in the line y = x.
- (ii) By using the substitution y = tx, show that the parametric equations of the curve are $3t \qquad 3t^2$

$$x = \frac{3t}{1+t^3}$$
 and $y = \frac{3t^2}{1+t^3}$.

- (iii) Find the points where the curve meets the line y = x.
- (iv) By using implicit differentiation, show that the maximum point on the leaf (first quadrant) corresponds to $t = 2^{\frac{1}{3}}$ and find the coordinates of the maximum point.
- 3. A curve has parametric equations $x = \cos^2 t$, $y = \frac{1}{2}\sin 2t$, where $0 \le y < \pi$.
 - (i) Show that the curve is a circle and find its Cartesian equation. Sketch the curve.
 - (ii) Indicate in your diagram the points on the circle for t = 0, $t = \frac{\pi}{4}$ and $t = \frac{\pi}{2}$.
 - (iii) Given that θ is the angle at the centre of the circle between the *x*-axis and the line joining the centre and a point P on the circle, show that $\tan \theta = \tan 2t$ for $0 < t < \frac{\pi}{4}$

and
$$\tan \theta = -\tan 2t$$
 for $\frac{\pi}{4} < t < \frac{\pi}{2}$.

