

Section 1: Using parametric equations

Exercise level 2

- 1. A curve has parametric equations $x = 3\cos\theta$, $y = 2\sin\theta$.
 - (i) Calculate values for x and y for values of θ from 0 to π , at intervals of $\frac{\pi}{12}$.
 - (ii) Using what you know about angles greater than π calculate values for x and y for θ from π to 2π .
 - (iii) Sketch the curve.
 - (iv) Find the Cartesian equation of the curve.
- 2. Given the parametric equations $x = t \frac{1}{t}$, $y = 2\left(t + \frac{1}{t}\right)$,
 - (i) For what value of *t* is the curve undefined?
 - (ii) Find the coordinates of any points where the curve meets the coordinate axes.
 - (iii) Find the Cartesian equation.
- 3. Sketch the curve with parametric equations $(2t(t^2 1), 4t^2)$, using $\frac{1}{2}$ unit values for *t* between -2 and +2. By eliminating *t*, find the Cartesian equation of the curve.
- 4. A ball is struck at ground level and projected with a speed of 16 ms⁻¹ at an angle θ to the horizontal. The parametric equations of the path of the ball are given by $x = 16t \cos \theta$, $y = 16t \sin \theta 5t^2$.
 - (i) By eliminating t show that the Cartesian equation of the path can be written as a quadratic in tan θ .
 - Given that $\theta = 30^{\circ}$,
 - (ii) How far does the ball travel horizontally before bouncing?
 - (iii) What is the maximum height attained by the ball?

