

Section 2: Further trigonometric equations

Exercise level 3

- 1. Find the points of intersection of the curves $y = \cos x$ and $y = 2 + \sqrt{3} \sin x$ for $0 < x < 9\pi$.
- 2. Show that $x = \frac{\pi}{4}$ is a root of the equation $2\sqrt{5}\sin x + 4\sqrt{5}\cos x = 3\sqrt{10}$.

Show further that $2\sqrt{5} \sin x + 4\sqrt{5} \cos x = R \sin(x+\theta)$, where *R* is a constant to be determined and $\theta = \arctan 2$. Hence, or otherwise, show that

$$\pi = 4 \arcsin\left(\frac{3}{\sqrt{10}}\right) - 4 \arctan 2.$$

3. The function g(x) is defined by

$$g(x) = 7\cos^2 x + \sin^2 x - 8\sin x \cos x$$

- (i) Show that g(x) can be expressed in the form $a + b\cos(2x + \alpha)$ where $\tan \alpha = \frac{4}{3}$ and a, b are constants to be determined. Find the greatest and the least values of g(x).
- (ii) Find, in terms of α , the least positive value of x for which g(x) = 0.

