Edexcel A level Maths Trigonometric identities

Section 2: Further trigonometric equations

Exercise level 3

1. Find the points of intersection of the curves $y=\cos x$ and $y=2+\sqrt{3} \sin x$ for $0<x<9 \pi$.
2. Show that $x=\frac{\pi}{4}$ is a root of the equation

$$
2 \sqrt{5} \sin x+4 \sqrt{5} \cos x=3 \sqrt{10}
$$

Show further that $2 \sqrt{5} \sin x+4 \sqrt{5} \cos x=R \sin (x+\theta)$, where R is a constant to be determined and $\theta=\arctan 2$. Hence, or otherwise, show that

$$
\pi=4 \arcsin \left(\frac{3}{\sqrt{10}}\right)-4 \arctan 2 .
$$

3. The function $\mathrm{g}(x)$ is defined by

$$
\mathrm{g}(x)=7 \cos ^{2} x+\sin ^{2} x-8 \sin x \cos x
$$

(i) Show that $\mathrm{g}(x)$ can be expressed in the form $a+b \cos (2 x+\alpha)$ where $\tan \alpha=\frac{4}{3}$ and a, b are constants to be determined. Find the greatest and the least values of $\mathrm{g}(x)$.
(ii) Find, in terms of α, the least positive value of x for which $\mathrm{g}(x)=0$.

