

Section 1: Functions, graphs and transformations

Exercise level 3 (Extension)

- 1. Find the range of the function $f(x) = x^2 2x + 4$ with domain $-1 \le x \le 2$.
- 2. Consider the function $f(x) = \frac{2x}{x^2 + 1}$
 - (i) By letting y = f(x), show that $yx^2 2x + y = 0$.
 - (ii) Using the discriminant of a quadratic, find the range of values for *y* such that the equation in (i) has real roots.
 - (iii) Deduce the range of the function f(x) and hence sketch the graph of y = f(x).
- 3. The point P on the curve y = f(x) is transformed to point P' (6, 8) under the transformation y = 2f(x-4). Find the coordinates of P.
- 4. Describe two transformations, in the order specified (**T** for translation, **S** for stretch), taking the original curve to the transformed curve:

Original	transformed	order
$y = x^2$	$y = 2x^2 + 6$	T then S
$y = \sqrt{x}$	$y = \sqrt{4x + 2}$	S then T
$y = \sqrt{x}$	$y = \sqrt{4x} + 2$	T then S (in <i>y</i> -direction)
$y = x^2$	$y = 4x^2 - 4x + 1$	S (in <i>x</i> -direction) then T

