Section 1: Functions, graphs and transformations

Exercise level 3 (Extension)

1. Find the range of the function $\mathrm{f}(x)=x^{2}-2 x+4$ with domain $-1 \leq x \leq 2$.
2. Consider the function $\mathrm{f}(x)=\frac{2 x}{x^{2}+1}$
(i) By letting $y=\mathrm{f}(x)$, show that $y x^{2}-2 x+y=0$.
(ii) Using the discriminant of a quadratic, find the range of values for y such that the equation in (i) has real roots.
(iii) Deduce the range of the function $\mathrm{f}(x)$ and hence sketch the graph of $y=\mathrm{f}(x)$.
3. The point P on the curve $y=\mathrm{f}(x)$ is transformed to point $\mathrm{P}^{\prime}(6,8)$ under the transformation $y=2 \mathrm{f}(x-4)$. Find the coordinates of P .
4. Describe two transformations, in the order specified (\mathbf{T} for translation, \mathbf{S} for stretch), taking the original curve to the transformed curve:

Original	transformed	order
$y=x^{2}$	$y=2 x^{2}+6$	\mathbf{T} then \mathbf{S}
$y=\sqrt{x}$	$y=\sqrt{4 x+2}$	\mathbf{S} then \mathbf{T}
$y=\sqrt{x}$	$y=\sqrt{4 x}+2$	\mathbf{T} then \mathbf{S} (in y-direction)
$y=x^{2}$	$y=4 x^{2}-4 x+1$	\mathbf{S} (in x-direction) then \mathbf{T}

