Edexcel A level Mathematics Functions

Section 2: Composite and inverse functions

Exercise level 3

1. Given $\mathrm{f}(x)=x+1$ and $\mathrm{g}(x)=\sqrt{x-1}$, find the missing numbers in the brackets in the following composite functions:

| $\mathrm{ff}(\quad)=1$ | $\operatorname{gf}(\quad)=1$ | $\mathrm{fg}(\quad)=1$ | $\operatorname{gg}(\quad)=1$ |
| :---: | :---: | :---: | :---: | :--- |
| $\mathrm{ff}(\quad)=2$ | $\operatorname{gf}(\quad)=2$ | $\mathrm{fg}(\quad)=2$ | $\operatorname{gg}(\quad)=2$ |
| $\mathrm{ff}(\quad)=3$ | $\operatorname{gf}(\quad)=3$ | $\mathrm{fg}(\quad)=3$ | $\operatorname{gg}(\quad)=3$ |
| $\mathrm{ff}(\quad)=4$ | $\operatorname{gf}(\quad)=4$ | $\mathrm{fg}(\quad)=4$ | $\operatorname{gg}(\quad)=4$ |
| $\mathrm{ff}(\quad)=5$ | $\operatorname{gf}(\quad)=5$ | $\mathrm{fg}(\quad)=5$ | $\operatorname{gg}(\quad)=5$ |

2. Express each of the following functions as suitable compositions of

$$
\mathrm{f}(x)=4^{x}, \quad \mathrm{~g}(x)=\sqrt{x}, \quad \mathrm{~h}(x)=\frac{1}{x}, \quad \mathrm{j}(x)=4 x
$$

(i) x
(ii) $2 \sqrt{x}$
(iii) 4^{x+1}
(iv) 2^{x}
(v) $8 \sqrt{x}$
3. The function $\mathrm{f}(x)=a x^{2}+b, \quad x \geq 0$, satisfies $\mathrm{f}^{-1}(1)=1$ and $\mathrm{f}^{-1}(2)=2$. Find the value of $f^{-1}(3)$.
4. (i) Find the largest integer k such that the function $\mathrm{f}(x)=x^{2}+4 x+3$ with (restricted) domain $x \leq k$, is a one-to-one function.
(ii) Find an expression for $\mathrm{f}^{-1}(x)$.
(iii)State the geometrical relationship between the graphs of $y=\mathrm{f}(x)$ and

$$
y=\mathrm{f}^{-1}(x) .
$$

(iv) Show algebraically that the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ do not meet.

