Edexcel A level Mathematics Functions

Section 2: Composite and inverse functions

Exercise level 3

1. Given f(x) = x + 1 and $g(x) = \sqrt{x - 1}$, find the missing numbers in the brackets in the following composite functions:

ff()=1	gf()=1	fg()=1	gg()=1
ff()=2	gf()=2	fg() = 2	gg()=2
ff()=3	gf()=3	fg()=3	gg()=3
ff()=4	gf()=4	fg()=4	gg()=4
ff()=5	gf()=5	fg()=5	gg() = 5

2. Express each of the following functions as suitable compositions of

$$f(x) = 4^x$$
, $g(x) = \sqrt{x}$, $h(x) = \frac{1}{x}$, $j(x) = 4x$

- (i) *x*
- (ii) $2\sqrt{x}$
- (iii) 4^{x+1}
- (iv) 2^x
- (v) $8\sqrt{x}$

3. The function $f(x) = ax^2 + b$, $x \ge 0$, satisfies $f^{-1}(1) = 1$ and $f^{-1}(2) = 2$. Find the value of $f^{-1}(3)$.

4. (i) Find the largest integer k such that the function $f(x) = x^2 + 4x + 3$ with (restricted) domain $x \le k$, is a one-to-one function.

- (ii) Find an expression for $f^{-1}(x)$.
- (iii)State the geometrical relationship between the graphs of y = f(x) and $y = f^{-1}(x)$.
- (iv) Show algebraically that the graphs of y = f(x) and $y = f^{-1}(x)$ do not meet.