

Section 1: Methods of proof

Exercise level 2

- 1. Prove that for real numbers, |a + b| is less than or equal to |a| + |b|, by considering each of the cases:
 - (i) a and b are both positive
 - (ii) a and b are both negative
 - (iii) *a* is positive, *b* is negative and |a| > |b|
 - (iv) *a* is positive, *b* is negative and |a| < |b|
 - (v) *a* is negative, *b* is positive and |a| > |b|
 - (vi) *a* is negative, *b* is positive and |a| < |b|.
- 2. The number 100...01 (with 3n 1 zeros, where *n* is an integer larger then 0) can be written as $10^{3n} + 1$.
 - (i) Use the identity $a^3 + b^3 = (a + b)(a^2 ab + b^2)$ with $a = 10^n$ and b = 1 to write this number as the product of two factors.
 - (ii) Prove that no numbers of this form are prime numbers, by showing that both factors are greater than 1 for all values of n greater than 0.
- 3. Prove that there are no rational number solutions to the equation $x^3 + x + 1 = 0$ using the method of proof by contradiction as follows:
 - (i) Assume that there is a rational number $\frac{p}{q}$ in its lowest terms, with $p, q \neq 0$,

which satisfies the equation. Substitute $x = \frac{p}{q}$ and multiply through by q^3 to

obtain an equation involving p and q.

- (ii) Show that in each of the cases
 - (a) p and q are both odd
 - (b) p is even and q is odd
 - (c) p is odd and q is even

the left-hand side of the equation must be odd and therefore cannot be zero.

- (iii) Explain why the case p and q are both even contradicts the assumption in (i).
- 4. Use the method of Question 3 to prove that there is no rational number solution to the equation

$$x^5 + x^4 + x^3 + x^2 + 1 = 0$$

- 5. (i) Show that $n^7 n = n(n-1)(n+1)(n^2 + n + 1)(n^2 n + 1)$.
 - (ii) Prove that if *n* is a positive integer then $n^7 n$ is divisible by 7 using proof by exhaustion by considering the cases n = 7x, n = 7x+1, ... n = 7x+6 where *x* is a positive integer.

