Edexcel A level Mathematics Proof

Section 1: Methods of proof

Exercise level 2

1. Prove that for real numbers, $|a+b|$ is less than or equal to $|a|+|b|$, by considering each of the cases:
(i) a and b are both positive
(ii) a and b are both negative
(iii) a is positive, b is negative and $|a|>|b|$
(iv) a is positive, b is negative and $|a|<|b|$
(v) a is negative, b is positive and $|a|>|b|$
(vi) a is negative, b is positive and $|a|<|b|$.
2. The number $100 \ldots 01$ (with $3 n-1$ zeros, where n is an integer larger then 0) can be written as $10^{3 n}+1$.
(i) Use the identity $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ with $a=10^{n}$ and $b=1$ to write this number as the product of two factors.
(ii) Prove that no numbers of this form are prime numbers, by showing that both factors are greater than 1 for all values of n greater than 0 .
3. Prove that there are no rational number solutions to the equation $x^{3}+x+1=0$ using the method of proof by contradiction as follows:
(i) Assume that there is a rational number $\frac{p}{q}$ in its lowest terms, with $p, q \neq 0$, which satisfies the equation. Substitute $x=\frac{p}{q}$ and multiply through by q^{3} to obtain an equation involving p and q.
(ii) Show that in each of the cases
(a) $\quad p$ and q are both odd
(b) $\quad p$ is even and q is odd
(c) $\quad p$ is odd and q is even
the left-hand side of the equation must be odd and therefore cannot be zero.
(iii) Explain why the case p and q are both even contradicts the assumption in (i).
4. Use the method of Question 3 to prove that there is no rational number solution to the equation

$$
x^{5}+x^{4}+x^{3}+x^{2}+1=0
$$

5. (i) Show that $n^{7}-n=n(n-1)(n+1)\left(n^{2}+n+1\right)\left(n^{2}-n+1\right)$.
(ii) Prove that if n is a positive integer then $n^{7}-n$ is divisible by 7 using proof by exhaustion by considering the cases $n=7 x, n=7 x+1, \ldots$ $n=7 x+6$ where x is a positive integer.
