Edexcel A level Mathematics Proof

Section 1: Methods of proof

Exercise level 1

1. For each of the following conjectures, decide whether it is true or false. If it is true prove it, stating which method you have used. If it is false give a counter-example.
(i) If a is a factor of b and a is a factor of c then a is a factor of $b+c$, where a, b and c are positive integers.
(ii) 103 is a prime number
(iii) $n^{2}+n+1$ is a prime number for all values of n.
(iv) If a and b are real numbers, then $a^{2}+b^{2} \geq 2 a b$.
(v) The cube root of 2 is irrational.
2. (i) Prove that if a and b are rational numbers, then $a+b$ is a rational number.
(ii) Give a counter-example to disprove the statement that if $a+b$ is a rational number, then a and b are both rational numbers.
(iii) Use the method of proof by contradiction to prove that if a is a rational number and b is an irrational number, then $a+b$ is an irrational number.
3. The triangle below has a right-angle at C .

(i) Explain why triangle ADC is similar to triangle ACB .

Use these similar triangles to write down a relationship between a, b, c and x.
(ii) Explain why triangle BDC is similar to triangle BCA.

Use these similar triangles to write down another relationship between a, b, c and x.
(iii) Eliminate x from the two equations you have found.

What well-known result have you proved?
4. Prove that there are no positive integer solutions to the equation $x^{2}-y^{2}=1$ using the method of proof by contradiction as follows:
(i) Write the left hand side of the equation as the product of two factors.
(ii) Assume that a solution (x, y) exists where x and y are positive integers.
(iii) Write down the possible values of each factor of the left-hand side.
(iv) Show that each case leads to values of x and y which are not both positive integers.
5. Use the method of Question 4 to show that there are no positive integer solutions to the equation $x^{2}-y^{2}=10$.

