Edexcel AS Further Mathematics Vectors

Section 4: Finding distances

Section test

1. Find the distance of the point $(5,1,2)$ from the plane $\mathbf{r} .\left(\begin{array}{c}3 \\ -4 \\ 5\end{array}\right)=11$.
2. Find the shortest distance from the point $(4,2,2)$ to the line $\mathbf{r}=\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$.
3. Find the shortest distance between the two skew lines $\mathbf{r}=\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 1 \\ -4\end{array}\right)$ and

$$
\mathbf{r}=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right)
$$

4. Find the shortest distance from the point $\mathrm{P}(4,1,6)$ to the plane $2 x-3 y+3 z=1$. Find the coordinates of the point on the plane that is closest to P .
5. Find the coordinates of the foot of the perpendicular from the point $(3,1,-1)$ to the line $\frac{x-1}{1}=\frac{y+6}{2}=\frac{z+2}{2}$.
Find the distance of the point from the line.
6. Two lines have equations

$$
l_{1}: \mathbf{r}=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
0 \\
3
\end{array}\right) \text { and } l_{2}: \mathbf{r}=\left(\begin{array}{c}
7 \\
9 \\
-13
\end{array}\right)+\mu\left(\begin{array}{c}
4 \\
-1 \\
5
\end{array}\right)
$$

Points P and Q are on l_{1} and l_{2} respectively, such that PQ is perpendicular to both l_{1} and l_{2}.
Find the coordinates of P and Q .
Find the distance PQ .

Edexcel AS FM Vectors 1 section test solutions

Section test solutions

1. The shortest distance from the point $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane
$a x+b y+c z+d=0$ is given by $\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$.
So the shortest distance from the point $(5,1,2)$ to the plane
$3 x-4 y+5 z-11=0$ is given by $\left|\frac{15-4+10-11}{\sqrt{3^{2}+4^{2}+5^{2}}}\right|=\frac{10}{\sqrt{50}}=\frac{10}{5 \sqrt{2}}=\sqrt{2}$
2. Let M be the point on the line closest to P.
$\overrightarrow{O M}=\left(\begin{array}{c}3+\lambda \\ 1-\lambda \\ -1+2 \lambda\end{array}\right)$
$\overrightarrow{P M}=\left(\begin{array}{c}3+\lambda \\ 1-\lambda \\ -1+2 \lambda\end{array}\right)-\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)=\left(\begin{array}{c}-1+\lambda \\ -1-\lambda \\ -3+2 \lambda\end{array}\right)$
$\overrightarrow{P M}$ is perpendicular to $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$, so $\left(\begin{array}{c}-1+\lambda \\ -1-\lambda \\ -3+2 \lambda\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)=0$ $-1+\lambda-(-1-\lambda)+2(-3+2 \lambda)=0$
$6 \lambda=6$
$\lambda=1$
So $\overrightarrow{P M}=\left(\begin{array}{l}-1+1 \\ -1-1 \\ -3+2\end{array}\right)=\left(\begin{array}{c}0 \\ -2 \\ -1\end{array}\right)$
$|\overrightarrow{P M}|=\sqrt{0^{2}+2^{2}+1^{2}}=\sqrt{5}$
3. Let P and Q be the points on the two lines that are closest to each other.

Phas position vector $\underset{\sim}{r}=\left(\begin{array}{c}3+\lambda \\ -2+\lambda \\ -1-4 \lambda\end{array}\right)$
Q has position vector $\underset{\sim}{r}=\left(\begin{array}{c}1 \\ 1+\mu \\ 3-2 \mu\end{array}\right)$

Edexcel AS FM Vectors 1 section test solutions

$\overrightarrow{P Q}=\left(\begin{array}{c}1 \\ 1+\mu \\ 3-2 \mu\end{array}\right)-\left(\begin{array}{c}3+\lambda \\ -2+\lambda \\ -1-4 \lambda\end{array}\right)=\left(\begin{array}{c}-2-\lambda \\ 3+\mu-\lambda \\ 4-2 \mu+4 \lambda\end{array}\right)$
$\overrightarrow{P Q}$ is perpendicular to both lines
so $\left(\begin{array}{c}-2-\lambda \\ 3+\mu-\lambda \\ 4-2 \mu+4 \lambda\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 1 \\ -4\end{array}\right)=0$
$-2-\lambda+3+\mu-\lambda-4(4-2 \mu+4 \lambda)=0$
$-18 \lambda+9 \mu=15$
$-6 \lambda+3 \mu=5$
and $\left(\begin{array}{c}-2-\lambda \\ 3+\mu-\lambda \\ 4-2 \mu+4 \lambda\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 1 \\ -2\end{array}\right)=0$
$3+\mu-\lambda-2(4-2 \mu+4 \lambda)=0$

$$
-9 \lambda+5 \mu=5
$$

Solving these equations simultaneously gives $\mu=-5, \lambda=-\frac{10}{3}$
$\overrightarrow{P Q}=\left(\begin{array}{c}-2+\frac{10}{3} \\ 3-5+\frac{10}{3} \\ 4+10-\frac{40}{3}\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}4 \\ -4 \\ 2\end{array}\right)=\frac{2}{3}\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$
$|\overrightarrow{P Q}|=\frac{2}{3} \sqrt{2^{2}+2^{2}+1^{2}}=\frac{2}{3} \times 3=2$
4. The shortest distance from the point $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane
$a x+b y+c z+d=0$ is given by $\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$.
so the shortest distance from the point $(4,1,6)$ to the plane $2 x-3 y+3 z=1$ is given by $\left|\frac{8-3+18-1}{\sqrt{2^{2}+3^{2}+3^{2}}}\right|=\frac{22}{\sqrt{22}}=\sqrt{22}$

The line that goes through P perpendicular to the plane is
$\underset{\sim}{r}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)=\left(\begin{array}{c}4+2 \lambda \\ 1-3 \lambda \\ 6+3 \lambda\end{array}\right)$
Substituting into the equation of the plane:

Edexcel AS FM Vectors 1 section test solutions

$2(4+2 \lambda)-3(1-3 \lambda)+3(6+3 \lambda)+6=1$
$22 \lambda=-22$
$\lambda=-1$
Posítion vector of point on plane is $\underset{\sim}{r}=\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)$
So the coordinates of the point closest to P are $(2,4,3)$.
5. The line has equation $\underset{\sim}{r}=\left(\begin{array}{c}1 \\ -6 \\ -2\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$

Let the foot of the perpendicular be M
$\overrightarrow{O M}=\left(\begin{array}{c}1+\lambda \\ -6+2 \lambda \\ -2+2 \lambda\end{array}\right)$
P is the point $(3,1,-1)$
$\overrightarrow{P M}=\left(\begin{array}{c}1+\lambda \\ -6+2 \lambda \\ -2+2 \lambda\end{array}\right)-\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)=\left(\begin{array}{c}-2+\lambda \\ -7+2 \lambda \\ -1+2 \lambda\end{array}\right)$
This vector is perpendicular to the direction vector $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ for the line.
$\left(\begin{array}{c}-2+\lambda \\ -7+2 \lambda \\ -1+2 \lambda\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=0$
$-2+\lambda-14+4 \lambda-2+4 \lambda=0$
$g \lambda=18$
$\lambda=2$
$\overrightarrow{O M}=\left(\begin{array}{c}1+2 \\ -6+4 \\ -2+4\end{array}\right)$
The coordinates of the foot of the perpendicular are $(3,-2,2)$

Edexcel AS FM Vectors 1 section test solutions

The distance of the point from the line is the length of the vector PM.
$\overrightarrow{P M}=\left(\begin{array}{c}0 \\ -3 \\ 3\end{array}\right)$
$|P M|=\sqrt{3^{2}+3^{3}}=3 \sqrt{3}=4.24$ (3 s.f.)
6. The coordinates of P are of the form $\underline{r}=\left(\begin{array}{c}4+2 \lambda \\ 1 \\ 3 \lambda\end{array}\right)$

The coordinates of Q are of the form $\underline{r}=\left(\begin{array}{c}7+4 \mu \\ 9-\mu \\ -13+5 \mu\end{array}\right)$
$\overrightarrow{P Q}=\left(\begin{array}{c}7+4 \mu \\ 9-\mu \\ -13+5 \mu\end{array}\right)-\left(\begin{array}{c}4+2 \lambda \\ 1 \\ 3 \lambda\end{array}\right)=\left(\begin{array}{c}3+4 \mu-2 \lambda \\ 8-\mu \\ -13+5 \mu-3 \lambda\end{array}\right)$
$P Q$ is perpendicular to l_{1} so $\left(\begin{array}{c}3+4 \mu-2 \lambda \\ 8-\mu \\ -13+5 \mu-3 \lambda\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)=0$

$$
6+8 \mu-4 \lambda-39+15 \mu-9 \lambda=0
$$

$$
23 \mu-13 \lambda=33
$$

$P Q$ is perpendicular to l_{2} so $\left(\begin{array}{c}3+4 \mu-2 \lambda \\ 8-\mu \\ -13+5 \mu-3 \lambda\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -1 \\ 5\end{array}\right)=0$

$$
12+16 \mu-8 \lambda-8+\mu-65+25 \mu-15 \lambda=0
$$

$$
42 \mu-23 \lambda=61
$$

Solving these equations simultaneously gives $\lambda=1, \mu=2$.
SO P is $(6,1,3)$ and Q is $(15,7,-3)$.
$\overrightarrow{P Q}=\left(\begin{array}{c}9 \\ 6 \\ -6\end{array}\right)$ so $|\overrightarrow{P Q}|=3 \sqrt{3^{2}+2^{2}+2^{2}}=12.4$ (3 s.f.)

