Edexcel AS Further Mathematics Vectors

Section 2: The vector equation of a line

Section test

1. The vector equation of the line through the point $A(2,3)$ in the direction of the vector $\binom{2}{4}$ can be written as:
(a) $\mathbf{r}=\binom{2}{4}+\lambda\binom{2}{3}$
(b) $\mathbf{r}=\binom{0}{-1}+\lambda\binom{1}{2}$
(c) $\mathbf{r}=\lambda\binom{2}{4}$
(d) $y=2 x-1$
2. Find the coordinates of the point of intersection of the lines

$$
\begin{aligned}
\mathbf{r} & =\binom{-2}{3}+\lambda\binom{1}{2} \\
\text { and } \quad \mathbf{r} & =\binom{-1}{-2}+\mu\binom{3}{-1}
\end{aligned}
$$

3. Find the angle between the lines

$$
\mathbf{r}=\binom{2}{3}+\lambda\binom{-1}{2} \quad \text { and } \quad \mathbf{r}=\binom{1}{-2}+\mu\binom{1}{3} .
$$

4. The cartesian equation of the line $\mathbf{r}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$ is
(a) $x-2=\frac{z-3}{2}$ and $y=1$
(b) $2-x=\frac{z-3}{2}$ and $y=1$
(c) $2-x=\frac{z-3}{2}=y-1$
(d) $x-2=\frac{z-3}{2}=y-1$
5. The vector equation of the line through the points $\mathrm{A}(-1,2,3)$ and $\mathrm{B}(2,1,4)$ is
(a) $\mathbf{r}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)$
(b) $\mathbf{r}=\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$

Edexcel AS FM Vectors 2 section test solutions

(c) $\mathbf{r}=\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 7\end{array}\right)$
(d) $\mathbf{r}=\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$
6. The vector equation of the line $\frac{x-2}{3}=\frac{y}{2}=z+1$ is
(a) $\mathbf{r}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$
(b) $\mathbf{r}=\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
(c) $\mathbf{r}=\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$
(d) $\mathbf{r}=\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$
7. Find the angle between the lines $\mathbf{r}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}4 \\ 1 \\ -2\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$.
8. Find the angle between the line $\mathbf{r}=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$ and the z-axis.
9. Find the coordinates of the point of intersection of
$l_{1}: \mathbf{r}=\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right)$ and $l_{2}: \mathbf{r}=\left(\begin{array}{c}5 \\ -4 \\ 3\end{array}\right)+\mu\left(\begin{array}{c}-5 \\ 13 \\ 8\end{array}\right)$.
10. The line L is $\frac{x-3}{1}=\frac{y}{-1}=\frac{z-1}{2}$

The line M is $\frac{x+2}{2}=\frac{y-3}{-1}=\frac{z+1}{1}$
The line N is $\frac{x-4}{1}=\frac{y-1}{-3}=\frac{z-3}{2}$
The relationships between the line L and each of the lines M and N is
(a) L and M meet, L and N are skew
(b) L and M are skew, L and N meet
(c) L meets both M and N
(d) L and M are skew, L and N are skew

Edexcel AS FM Vectors 2 section test solutions

Section test solutions

1. $\underset{\sim}{a}=\binom{2}{3}$ and the line is in the direction $\binom{2}{4}$

$$
\begin{aligned}
\underset{\sim}{r} & =\underset{\sim}{a}+\lambda(\underset{\sim}{b}-\underset{\sim}{a})=\binom{2}{3}+\lambda\binom{2}{4}=\binom{2}{3}+\lambda\binom{1}{2} \\
& =\binom{0}{-1}+\lambda\binom{1}{2}
\end{aligned}
$$

2. The intersection of these lines is at $\binom{-2}{3}+\lambda\binom{1}{2}=\binom{-1}{-2}+\mu\binom{3}{-1}$ $x:-2+\lambda=-1+3 \mu \Rightarrow \lambda-3 \mu=1$
$y: 3+2 \lambda=-2-\mu \Rightarrow 2 \lambda+\mu=-5$
Solving simultaneously: $2 \lambda-6 \mu=2$

$$
\begin{aligned}
2 \lambda+\mu & =-5 \\
7 \mu & =-7 \\
\mu & =-1
\end{aligned}
$$

Putting this value back into $\underset{\sim}{r}=\binom{-1}{-2}+\mu\binom{3}{-1}$:
$\underset{\sim}{r}=\binom{-1}{-2}-1\binom{3}{-1}=\binom{-4}{-1}$
The point of intersection has coordinates $(-4,-1)$.
3. Using the direction vectors:

$$
\begin{aligned}
& \underset{\sim}{a} \cdot \underset{\sim}{b}=\binom{-1}{2} \cdot\binom{1}{3}=(-1) \times 1+2 \times 3=5 \\
& |\underset{\sim}{\mid}|=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5} \\
& |\underset{\sim}{b}|=\sqrt{1^{2}+3^{2}}=\sqrt{10} \\
& \cos \theta=\frac{\underset{\sim}{a} \cdot \underset{\sim}{|a||b|}}{|\underset{\sim}{b}|}=\frac{5}{\sqrt{5} \sqrt{5 \times 2}}=\frac{1}{\sqrt{2}} \\
& \theta=45^{\circ}
\end{aligned}
$$

Edexcel AS FM Vectors 2 section test solutions

4. using $\frac{x-a_{1}}{u_{1}}=\frac{y-a_{2}}{u_{2}}=\frac{z-a_{3}}{u_{3}}$
$\frac{x-2}{-1}=\frac{z-3}{2}$ and $y-1=0$
$2-x=\frac{z-3}{2}$ and $y=1$
5. Direction vector is $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)-\left(\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{r}3 \\ -1 \\ 1\end{array}\right)$

Equation of line is $\underset{\sim}{r}=\left(\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{r}3 \\ -1 \\ 1\end{array}\right)$
6. Writing the equation in the form $\frac{x-a_{1}}{u_{1}}=\frac{y-a_{2}}{u_{2}}=\frac{z-a_{3}}{u_{3}}$
$\frac{x-2}{3}=\frac{y}{2}=z+1 \Rightarrow \frac{x-2}{3}=\frac{y-0}{2}=\frac{z-(-1)}{1}$
In vector form this is $\underset{\sim}{r}=\left(\begin{array}{r}2 \\ 0 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
7. Using the direction vectors: $\cos \theta=\frac{a \cdot b}{|\underset{\sim}{a}||\underset{\sim}{b}|}$

$$
\begin{aligned}
& \underset{\sim}{a} \cdot \underset{\sim}{b}=\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right) \cdot\left(\begin{array}{r}
2 \\
0 \\
-1
\end{array}\right)=3 \times 2+(-1) \times 0+2 \times(-1)=4 \\
& |\underset{\sim}{|a|}|=\sqrt{3^{2}+(-1)^{2}+2^{2}}=\sqrt{14} \\
& |\underset{\sim}{\mid}|=\sqrt{2^{2}+0^{2}+(-1)^{2}}=\sqrt{5} \\
& \cos \theta=\frac{4}{\sqrt{14} \sqrt{5}} \\
& \theta=61.4^{\circ} \quad(1 \text { d.p })
\end{aligned}
$$

Edexcel AS FM Vectors 2 section test solutions

8. The direction vector is $\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$.

The direction vector for the z-axis is $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
The angle between the line and the z-axis is given by

$$
\begin{aligned}
& \cos \theta=\frac{\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)}{\sqrt{2^{2}+1^{2}+3^{3}} \sqrt{1^{2}}} \\
& \cos \theta=\left(\frac{3}{\sqrt{14}}\right) \\
& \theta=36.7^{\circ}
\end{aligned}
$$

9. The coordinates of points on l_{1} are $(2-\lambda, 1+3 \lambda, 5+2 \lambda)$.

The coordinates of points on l_{2} are $(5-5 \mu,-4+13 \mu, 3+8 \mu)$.
At the point of intersection,

$$
\begin{array}{rlrl}
2-\lambda & =5-5 \mu \\
1+3 \lambda & =-4+13 \mu \Rightarrow 3 \lambda-13 \mu & =-5 \tag{2}\\
5+2 \lambda & =3+8 \mu \\
\text { (1) }+(3) & \Rightarrow \mu=2, \lambda=7
\end{array}
$$

These values also satisfy equation (2).
The coordinates of the point of intersection are $(-5,22,19)$.
10. Points on L have coordinates $(3+\lambda,-\lambda, 1+2 \lambda)$

Points on M have coordinates $(-2+2 \mu, 3-3 \mu,-1+\mu)$
Points on N have coordinates $(4+t, 1-3 t, 3+2 t)$
If L and M meet,

$$
\left.\begin{array}{rl}
3+\lambda & =-2+2 \mu \quad \lambda-2 \mu
\end{array}\right)=-5 \quad \text { (1) }
$$

Edexcel AS FM Vectors 2 section test solutions

(1) + (2) $\Rightarrow \mu=-2, \lambda=-9$

These values do not satisfy equation (3), so lines L and M are skew.

$$
\begin{aligned}
& \text { If L and } N \text { meet, } \\
& \begin{aligned}
3+\lambda & =4+t \quad \lambda-t=1 \\
-\lambda & =1-3 t \Rightarrow-\lambda+3 t=1
\end{aligned} \\
& \begin{aligned}
1+2 \lambda & =3+2 t \quad \lambda-t=1
\end{aligned} \\
& \begin{aligned}
(1)+(2) & \Rightarrow 2 t=2 \\
& \Rightarrow t=1, \lambda=2
\end{aligned}
\end{aligned}
$$

These values also satisfy equation (3), so lines L and N meet.

