Edexcel AS Further Mathematics Vectors

Section 1: The scalar product

Section test

1. Find the value of $\binom{2}{-3} \cdot\binom{1}{4}$.
2. Find the value of $\left(\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$.
3. The angle between two vectors is 90°.

What is the scalar product of the two vectors?
4. Find the acute angle between the vectors $5 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $-2 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k}$.
5. Which of the following vectors are perpendicular to the vector $4 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$?

$$
\begin{aligned}
& \mathbf{i}-\mathbf{j}-\mathbf{k} \\
& -2 \mathbf{i}+3 \mathbf{j}+\mathbf{k} \\
& -\mathbf{i}-4 \mathbf{k}
\end{aligned}
$$

6. The vector $\left(\begin{array}{c}3 \\ k \\ 2 k-1\end{array}\right)$ is perpendicular to the vector $\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)$.

Find the value of k.
7. The vector $\mathbf{a}=4 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ is perpendicular to vector \mathbf{b}.

The vector \mathbf{b} could be equal to
(a) $4 \mathbf{i}-3 \mathbf{j}-7 \mathbf{k}$
(b) $-3 \mathbf{i}-4 \mathbf{j}$
(c) $-3 \mathbf{i}+4 \mathbf{j}$
(d) $-4 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k}$
8. The points P, Q and R have coordinates $(0,-1,4),(2,-1,3)$ and $(-1,2,0)$ respectively.
Find the vectors $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PR}}$.
Find the angle between the vectors $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PR}}$.
The angle you have just calculated is

Edexcel AS FM Vectors 1 section test solutions

(a) $180^{\circ}-\angle \mathrm{QPR}$
(b) $\angle \mathrm{QPR}$
(c) $180^{\circ}-\angle \mathrm{PQR}$
(d) $\angle \mathrm{PQR}$

Edexcel AS FM Vectors 1 section test solutions

Section test solutions

1. $\binom{2}{-3} \cdot\binom{1}{4}=(2 \times 1)+(-3 \times 4)$

$$
\begin{aligned}
& =2-12 \\
& =-10
\end{aligned}
$$

2. $\left(\begin{array}{r}-1 \\ 2 \\ -3\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)=(-1) \times 2+2 \times 1+(-3) \times 0=0$
3. When two lines are perpendicular to each other then

$$
\begin{aligned}
& \theta=90^{\circ} \Rightarrow \cos \theta=0 \Rightarrow \frac{a \cdot b}{|\underset{\sim}{a}||\underset{\sim}{b}|}=0 \\
& \text { If } \frac{a \cdot b}{|\underset{\sim}{a}||\underset{\sim}{b}|}=0 \text { then } \underset{\sim}{a} \cdot \underset{\sim}{b}=0
\end{aligned}
$$

4. $\underset{\sim}{a} \cdot \underset{\sim}{b}=\left(\begin{array}{c}5 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 3 \\ 3\end{array}\right)=(5 \times-2)+(-1 \times 3)+(2 \times 3)=-7$

$$
|a|=\sqrt{5^{2}+(-1)^{2}+2^{2}}=\sqrt{30}
$$

$$
|b|=\sqrt{(-2)^{2}+3^{2}+3^{2}}=\sqrt{22}
$$

$$
\cos \theta=\frac{a \cdot \underset{\sim}{b}}{|\underset{\sim}{\mid}||\underset{\sim}{b}|}=\frac{-7}{\sqrt{30} \sqrt{22}}
$$

$$
\theta=105.8^{\circ}
$$

The acute angle between the vectors is 74.2° (1 d.p.)
5. If they are perpendicular, the scalar product is zero

$$
\begin{aligned}
& \left(\begin{array}{c}
4 \\
3 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)=(4 \times 1)+(3 \times-1)+(-1 \times-1)=4-3+1=2 \\
& \left(\begin{array}{c}
4 \\
3 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right)=(4 \times-2)+(3 \times 3)+(-1 \times 1)=-8+9-1=0 \text { so perpendicular }
\end{aligned}
$$

Edexcel AS FM Vectors 1 section test solutions

$\left(\begin{array}{c}4 \\ 3 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 0 \\ -4\end{array}\right)=(4 \times-1)+(3 \times 0)+(-1 \times-4)=-4+0+4=0$ so perpendicular
6. $\left(\begin{array}{c}3 \\ k \\ 2 k-1\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)=0$
$6-3 k-(2 k-1)=0$
$6-3 k-2 k+1=0$
$5 k=7$
$k=1.4$
7. If they are perpendicular, $\underset{\sim}{a} \cdot \underset{\sim}{b}=0$
$\underset{\sim}{a} \cdot \underset{\sim}{b}=\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -3 \\ -7\end{array}\right)=(4 \times 4)+(3 \times-3)+(1 \times-7)=0$
$\underset{\sim}{a} \cdot \underset{\sim}{b}=\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}-3 \\ -4 \\ 0\end{array}\right)=(4 \times-3)+(3 \times-4)+(1 \times 0)=-24 \neq 0$
$\underset{\sim}{a} \cdot \underset{\sim}{b}=\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}-3 \\ 4 \\ 0\end{array}\right)=(4 \times-3)+(3 \times 4)+(1 \times 0)=0$
$\underset{\sim}{a} \cdot \underset{\sim}{b}=\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}-4 \\ 3 \\ -7\end{array}\right)=(4 \times-4)+(3 \times 3)+(1 \times-7)=-14 \neq 0$
The vector $\underset{\sim}{b}$ could be $4 \underset{\sim}{i}-3 \underset{\sim}{j}-7 \underset{\sim}{k}$ or $-3 \underset{\sim}{i}+4 \underset{\sim}{j}$
8. $\overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)-\left(\begin{array}{c}0 \\ -1 \\ 4\end{array}\right)=\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$
$\overrightarrow{P R}=\overrightarrow{O R}-\overrightarrow{O P}=\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)-\left(\begin{array}{c}0 \\ -1 \\ 4\end{array}\right)=\left(\begin{array}{c}-1 \\ 3 \\ -4\end{array}\right)$

Edexcel AS FM Vectors 1 section test solutions

$$
\begin{aligned}
& \overrightarrow{P Q} \cdot \overrightarrow{P R}=\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
3 \\
-4
\end{array}\right)=-2+0+4=2 \\
& |\overrightarrow{P Q}|=\sqrt{2^{2}+0^{2}+(-1)^{2}}=\sqrt{5} \\
& |\overrightarrow{P R}|=\sqrt{(-1)^{2}+3^{3}+(-4)^{2}}=\sqrt{26} \\
& \text { Angle between vectors }=\cos ^{-1}\left(\frac{2}{\sqrt{5} \sqrt{26}}\right)=79 \cdot 9^{\circ} \quad \text { (1 d.p.) }
\end{aligned}
$$

The angle calculated above is angle QPR.

