Edexcel AS Further Maths Roots of polynomials "integral

Section 2: Complex roots of polynomials

Section test

1. How many roots does the equation

$$
x^{4}+3 x^{2}-4=0
$$

have?
2. Which of the following groups of numbers could be the roots of a polynomial equation with real coefficients?
(i)
3, 4, 5
(ii) $1+\mathrm{i}, 2,4$
(iii) $1-\mathrm{i}, \mathrm{i}, 1$
(iv) $2,1+\mathrm{i}, 1-\mathrm{i}$
3. Which of the following polynomials, when multiplied out, has real coefficients?
(a) $(z-2-\mathrm{i})(z-4)(z-2+\mathrm{i})$
(b) $(z-2-\mathrm{i})(z-3)(z-4+2 \mathrm{i})$
(c) $(z-3+4 \mathrm{i})(z+3+4 \mathrm{i})$
(d) $(z-\mathrm{i})(z+\mathrm{i})(z-1)(z+1)(z-2 \mathrm{i})$
4. $1-2 \mathrm{i}$ and $3+\mathrm{i}$ are two roots of a quartic equation with real coefficients. The other two roots are.
(a) $1+2 \mathrm{i}$ and $3-\mathrm{i}$
(b) $-1+2 \mathrm{i}$ and $-3-\mathrm{i}$
(c) $-1-2 i$ and $-3+i$
(d) $1-2 \mathrm{i}$ and $3-\mathrm{i}$
5. Find the quartic equation referred to in Question 4.
6. $2+\mathrm{i}$ is a root of $z^{3}-z^{2}-7 z+15=0$. What is the real root of the equation?
7. The real root of $z^{3}-4 z^{2}+14 z-20=0$ is 2 . Find the other roots.
8. $1+2 \mathrm{i}$ is a root of the cubic equation $z^{3}+a z^{2}+b z+5=0$. Find the values of a and b.
9. $-2+\mathrm{i}$ is a root of the equation $z^{4}+2 z^{3}-z^{2}-2 z+10=0$. Find the other roots.
10. The equation $z^{4}+z^{3}+2 z^{2}+4 z-8=0$ has two real roots.

Find the four roots of the equation.

Edexcel AS FM Roots of polys $\mathbf{2}$ section test solns

Solutions to section test

1. This is a quartic equation, and so must have exactly four roots.
2. Any complex roots of a polynomial equation with real coefficients occur in conjugate pairs. Therefore ($i i$) and ($i i i$) cannot be the roots of a polynomial equation with real coefficients, since the complex roots do not occur in conjugate pairs. (iv) has two complex roots which are a conjugate pair, and (i) has all real roots, so both of these could be the roots of a polynomial equation with real coefficients.
3. (a) is the only one in which the complex roots occur in conjugate pairs.
4. 1 - $2 i$ is a root, so $1+2 i$ is also a root.
$3+i$ is a root, so 3 - i is also a root.
5. The equation is $(z-1+2 i)(z-1-2 i)(z-3+i)(z-3-i)=0$

$$
\begin{aligned}
& \left((z-1)^{2}+4\right)\left((z-3)^{2}+1\right)=0 \\
& \left(z^{2}-2 z+5\right)\left(z^{2}-6 z+10\right)=0 \\
& z^{4}-8 z^{3}+27 z^{2}-50 z+50=0
\end{aligned}
$$

6. Since $2+i$ is a root, 2 - i is also a root.

The sum of the roots is 1 (using $\sum \alpha=-\frac{b}{a}$)
so $\alpha+2+i+2-i=1$
$\alpha=-3$
so the real root is -3 .
7. 2 is a root of the equation, so $z-2$ is a factor.
$z^{3}-4 z^{2}+14 z-20=0$
$(z-2)\left(z^{2}-2 z+10\right)=0$
The other two roots are the roots of the quadratic equation $z^{2}-2 z+10=0$

Edexcel AS FM Roots of polys $\mathbf{2}$ section test solns

$$
\begin{aligned}
z & =\frac{2 \pm \sqrt{4-4 \times 1 \times 10}}{2} \\
& =\frac{2 \pm \sqrt{-36}}{2} \\
& =\frac{2 \pm 6 i}{2} \\
& =1 \pm 3 i
\end{aligned}
$$

8. $(1+2 i)^{2}=1+4 i-4=-3+4 i$
$(1+2 i)^{3}=(-3+4 i)(1+2 i)=-3-2 i-8=-11-2 i$
Substituting into $z^{3}+a z^{2}+b z+5=0$:
$-11-2 i+a(-3+4 i)+b(1+2 i)+5=0$
Equating real parts: $-11-3 a+b+5=0 \Rightarrow 3 a-b=-6$
Equating imaginary parts: $-2+4 a+2 b=0 \Rightarrow 2 a+b=1$
Adding: $5 a=-5 \Rightarrow a=-1, \quad b=3$
9. $-2+i$ is a root, so -2 - iis a root
so $(z+2-i)(z+2+i)$ is a factor.

$$
\begin{aligned}
(z+2-i)(z+2+i) & =(z+2)^{2}+1 \\
& =z^{2}+4 z+5
\end{aligned}
$$

$z^{4}+2 z^{3}-z^{2}-2 z+10=\left(z^{2}+4 z+5\right)\left(z^{2}-2 z+2\right)$
The other two roots are the roots of the quadratic equation $z^{2}-2 z+2=0$.

$$
\begin{aligned}
z & =\frac{2 \pm \sqrt{4-4 \times 1 \times 1}}{2} \\
& =\frac{2 \pm \sqrt{-4}}{2} \\
& =\frac{2 \pm 2 i}{2} \\
& =1 \pm i
\end{aligned}
$$

The other roots are $-2-i, 1+i$ and $1-i$.
10. $f(z)=z^{4}+z^{3}+2 z^{2}+4 z-8$
$f(1)=1+1+2+4-8=0$
$f(-2)=16-8+8-8-8=0$
so $(z-1)$ and $(z+2)$ are factors.
$(z-1)(z+2)=z^{2}+z-2$
$z^{4}+z^{3}+2 z^{2}+4 z-8=\left(z^{2}+z-2\right)\left(z^{2}+4\right)$
The roots of $z^{2}+4=0$ are $2 i$ and $-2 i$.
so the roots of the equation are $1,-2,2 i$ and $-2 i$.

