Edexcel AS Further Maths Roots of polynomials "integral

Section 1: Roots and coefficients

Section test

1. The quadratic equation $2 z^{2}+3 z-4=0$ has roots α and β. Find the values of $\alpha+\beta$ and $\alpha \beta$
2. The quadratic equation $z^{2}-5 z+1=0$ has roots α and β. Find the quadratic equation with roots $2 \alpha+1,2 \beta+1$.
3. Find a quadratic equation with roots 0.5 and -2 .
4. The cubic equation $3 z^{3}+2 z^{2}-z-3=0$ has roots α, β, γ.

Find the values of $\sum \alpha, \sum \alpha \beta$ and $\alpha \beta \gamma$.
5. Find a cubic equation with roots $-2,1+2 \mathrm{i}, 1-2 \mathrm{i}$.
6. The roots of the cubic equation $z^{3}+z^{2}-z-1=0$ are α, β, γ. Find a cubic equation with roots $2 \alpha, 2 \beta, 2 \gamma$.

Questions 7 and 8 are about the cubic equation $3 z^{3}+p z^{2}+q z+15=0$, which has roots $\alpha, 1-2 \alpha, \frac{1}{\alpha}$.
7. Find the value of α.
8. Find the values of p and q.
9. One root of the equation $4 z^{3}-13 z+6=0$ is three times another.

Find the roots of the equation.
10. The roots of the quartic equation $z^{4}+3 z^{3}-2 z+1=0$ are α, β, γ and δ.

Find the value of $\alpha \beta \gamma+\beta \gamma \delta+\gamma \delta \alpha+\delta \alpha \beta$.

Edexcel AS FM Roots of polys 1 section test solns

Solutions to section test

1. For the quadratic equation $2 z^{2}+3 z-4=0, a=2, b=3, c=-4$.

The sum of the roots, $\alpha+\beta=-\frac{b}{a}=-\frac{3}{2}$.
The product of the roots, $\alpha \beta=\frac{c}{a}=\frac{-4}{2}=-2$
2. Let $w=2 z+1$, so $z=\frac{w-1}{2}$

Substítuting into $z^{2}-5 z+1=0$:

$$
\begin{aligned}
& \left(\frac{w-1}{2}\right)^{2}-5\left(\frac{w-1}{2}\right)+1=0 \\
& \frac{(w-1)^{2}}{4}-\frac{5(w-1)}{2}+1=0 \\
& (w-1)^{2}-10(w-1)+4=0 \\
& w^{2}-2 w+1-10 w+10+4=0 \\
& w^{2}-12 w+15=0
\end{aligned}
$$

3. The sum of the roots is -1.5 , so $-\frac{b}{a}=-1.5 \Rightarrow b=1.5 a$

The product of the roots is -1 , so $\frac{c}{a}=-1 \Rightarrow c=-a$
Let $a=2$, then $b=3$ and $c=-2$
The quadratic equation with these roots is $2 z^{2}+3 z-2=0$.
4. For the cubic equation $3 z^{3}+2 z^{2}-z-3=0, a=3, b=2, c=-1, d=-3$
$\sum \alpha=\alpha+\beta+\gamma=-\frac{b}{a}=-\frac{2}{3}$
$\sum \beta \gamma=\beta \gamma+\gamma \alpha+\alpha \beta=\frac{c}{a}=-\frac{1}{3}$
$\alpha \beta \gamma=-\frac{d}{a}=1$

Edexcel AS FM Roots of polys 1 section test solns
5. $\sum \alpha=-2+1+2 i+1-2 i=0 \Rightarrow-\frac{b}{a}=0 \Rightarrow b=0$
$\sum \beta \gamma=-2(1+2 i)-2(1-2 i)+(1+2 i)(1-2 i)=-4+1+4=1 \Rightarrow \frac{c}{a}=1 \Rightarrow c=a$
$\alpha \beta \gamma=-2(1+2 i)(1-2 i)=-2(1+4)=-10 \Rightarrow-\frac{d}{a}=-10 \Rightarrow d=10 a$
Let $a=1$, so $b=0, c=1$ and $d=10$
The cubic equation is $z^{3}+z+10=0$
6. Let $w=2 z$, so $z=\frac{w}{2}$
substituting into $z^{3}+z^{2}-z-1=0$:

$$
\begin{aligned}
& \left(\frac{w}{2}\right)^{3}+\left(\frac{w}{2}\right)^{2}-\frac{w}{2}-1=0 \\
& \frac{w^{3}}{8}+\frac{w^{2}}{4}-\frac{w}{2}-1=0 \\
& w^{3}+2 w^{2}-4 w-8=0
\end{aligned}
$$

7. For the equation $3 z^{3}+p z^{2}+q z+15=0, a=3, b=p, c=q, d=15$

$$
\begin{aligned}
& \alpha \beta \gamma=-\frac{d}{a}=-\frac{15}{3}=-5 \\
& \not \alpha(1-2 \alpha) \times \frac{1}{\not d}=-5 \\
& 1-2 \alpha=-5 \\
& \alpha=3
\end{aligned}
$$

8. $\sum \alpha=-\frac{b}{a}$
$\sum \beta \gamma=\frac{c}{a}$
$3-5+\frac{1}{3}=-\frac{p}{3}$
$-\frac{5}{3}+1-15=\frac{9}{3}$
$p=5$
$q=-47$
9. For the equation $4 z^{3}-13 z+6=0, a=4, b=0, c=-13, d=6$

Let the roots be $\alpha, 3 \alpha, \beta$
$\sum \alpha=-\frac{b}{a}$
$\alpha+3 \alpha+\beta=0$
$4 \alpha+\beta=0$

Edexcel AS FM Roots of polys 1 section test solns
$\alpha \beta \gamma=-\frac{d}{a}$
$\alpha \times 3 \alpha \times \beta=-\frac{6}{4}=-\frac{3}{2}$
$\beta=-\frac{1}{2 \alpha^{2}}$
Substituting (2) into (1):

$$
\begin{aligned}
& 4 \alpha-\frac{1}{2 \alpha^{2}}=0 \\
& 8 \alpha^{3}=1 \\
& \alpha^{3}=\frac{1}{8} \\
& \alpha=\frac{1}{2} \\
& \beta=-\frac{1}{2 \alpha^{2}}=-\frac{1}{2 \times \frac{1}{4}}=-2
\end{aligned}
$$

The roots are $\frac{1}{2}, \frac{3}{2},-2$
10. $\sum \alpha \beta \gamma=-\frac{d}{a}=2$

