Edexcel AS Further Maths Roots of polynomials

Section 1: Roots and coefficients

Section test

- 1. The quadratic equation $2z^2 + 3z 4 = 0$ has roots α and β . Find the values of $\alpha + \beta$ and $\alpha\beta$
- 2. The quadratic equation $z^2 5z + 1 = 0$ has roots α and β . Find the quadratic equation with roots $2\alpha + 1$, $2\beta + 1$.
- 3. Find a quadratic equation with roots 0.5 and -2.
- 4. The cubic equation $3z^3 + 2z^2 z 3 = 0$ has roots α, β, γ . Find the values of $\sum \alpha$, $\sum \alpha \beta$ and $\alpha \beta \gamma$.
- 5. Find a cubic equation with roots -2, 1 + 2i, 1 2i.
- 6. The roots of the cubic equation $z^3 + z^2 z 1 = 0$ are α, β, γ . Find a cubic equation with roots $2\alpha, 2\beta, 2\gamma$.

Questions 7 and 8 are about the cubic equation $3z^3 + pz^2 + qz + 15 = 0$, which has roots $\alpha, 1-2\alpha, \frac{1}{\alpha}$.

- 7. Find the value of α .
- 8. Find the values of p and q.
- 9. One root of the equation $4z^3 13z + 6 = 0$ is three times another. Find the roots of the equation.
- 10. The roots of the quartic equation $z^4 + 3z^3 2z + 1 = 0$ are α , β , γ and δ . Find the value of $\alpha\beta\gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta$.

Edexcel AS FM Roots of polys 1 section test solns

Solutions to section test

1. For the quadratic equation $2z^2 + 3z - 4 = 0$, a = 2, b = 3, c = -4. The sum of the roots, $\alpha + \beta = -\frac{b}{a} = -\frac{3}{2}$. The product of the roots, $\alpha\beta = \frac{c}{a} = \frac{-4}{2} = -2$

2. Let
$$w = 2z + 1$$
, so $z = \frac{w - 1}{2}$
Substituting into $z^2 - 5z + 1 = 0$:
 $\left(\frac{w - 1}{2}\right)^2 - 5\left(\frac{w - 1}{2}\right) + 1 = 0$
 $\frac{(w - 1)^2}{4} - \frac{5(w - 1)}{2} + 1 = 0$
 $(w - 1)^2 - 10(w - 1) + 4 = 0$
 $w^2 - 2w + 1 - 10w + 10 + 4 = 0$
 $w^2 - 12w + 15 = 0$

- 3. The sum of the roots is -1.5, so $-\frac{b}{a} = -1.5 \Rightarrow b = 1.5a$ The product of the roots is -1, so $\frac{c}{a} = -1 \Rightarrow c = -a$ Let a = 2, then b = 3 and c = -2The quadratic equation with these roots is $2z^2 + 3z - 2 = 0$.
- 4. For the cubic equation $3z^3 + 2z^2 z 3 = 0$, a = 3, b = 2, c = -1, d = -3 $\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{a} = -\frac{2}{3}$ $\sum \beta \gamma = \beta \gamma + \gamma \alpha + \alpha \beta = \frac{c}{a} = -\frac{1}{3}$ $\alpha \beta \gamma = -\frac{d}{a} = 1$

Edexcel AS FM Roots of polys 1 section test solns

5. $\sum \alpha = -2 + 1 + 2i + 1 - 2i = 0 \Rightarrow -\frac{b}{a} = 0 \Rightarrow b = 0$ $\sum \beta \gamma = -2(1+2i) - 2(1-2i) + (1+2i)(1-2i) = -4 + 1 + 4 = 1 \Rightarrow \frac{c}{a} = 1 \Rightarrow c = a$ $\alpha \beta \gamma = -2(1+2i)(1-2i) = -2(1+4) = -10 \Rightarrow -\frac{d}{a} = -10 \Rightarrow d = 10a$ Let a = 1, so b = 0, c = 1 and d = 10The cubic equation is $z^3 + z + 10 = 0$

6. Let
$$w = 2z$$
, so $z = \frac{w}{2}$
Substituting into $z^3 + z^2 - z - 1 = 0$:
 $\left(\frac{w}{2}\right)^3 + \left(\frac{w}{2}\right)^2 - \frac{w}{2} - 1 = 0$
 $\frac{w^3}{8} + \frac{w^2}{4} - \frac{w}{2} - 1 = 0$
 $w^3 + 2w^2 - 4w - 8 = 0$

7. For the equation $3z^3 + pz^2 + qz + 15 = 0$, a = 3, b = p, c = q, d = 15 $\alpha\beta\gamma = -\frac{d}{a} = -\frac{15}{3} = -5$ $\alpha(1-2\alpha) \times \frac{1}{\alpha} = -5$ $1-2\alpha = -5$ $\alpha = 3$

8.
$$\sum \alpha = -\frac{b}{a}$$
$$\sum \beta \gamma = \frac{c}{a}$$
$$3 - 5 + \frac{1}{3} = -\frac{p}{3}$$
$$-\frac{5}{3} + 1 - 15 = \frac{q}{3}$$
$$p = 5$$
$$q = -47$$

9. For the equation $4z^3 - 13z + 6 = 0$, a = 4, b = 0, c = -13, d = 6Let the roots be α , 3α , β

$$\sum \alpha = -\frac{b}{a}$$

$$\alpha + 3\alpha + \beta = 0$$

$$4\alpha + \beta = 0$$
(1)

Edexcel AS FM Roots of polys 1 section test solns

$$\alpha\beta\gamma = -\frac{d}{a}$$

$$\alpha \times 3\alpha \times \beta = -\frac{6}{4} = -\frac{3}{2}$$

$$\beta = -\frac{1}{2\alpha^{2}}$$
(2)
Substituting (2) into (1):
$$4\alpha - \frac{1}{2\alpha^{2}} = 0$$

$$8\alpha^{3} = 1$$

$$\alpha^{3} = \frac{1}{8}$$

$$\alpha = \frac{1}{2}$$

$$\beta = -\frac{1}{2\alpha^{2}} = -\frac{1}{2 \times \frac{1}{4}} = -2$$
The roots are $\frac{1}{2}, \frac{3}{2}, -2$

10.
$$\sum \alpha \beta \gamma = -\frac{\alpha'}{\alpha} = 2$$