Edexcel AS Further Maths Sequences and series "integral

Section 2: Proof by induction

Section test

1. Prove by induction that $3+5+7+\ldots+(2 n+1)=n(n+2)$.
2. Prove by induction that $5^{n}-2^{n}$ is a multiple of 3 for all positive integers n.
3. $\mathbf{A}=\left(\begin{array}{ll}4 & -1 \\ 9 & -2\end{array}\right)$

Prove by induction that $\mathbf{A}^{n}=\left(\begin{array}{cc}1+3 n & -n \\ 9 n & 1-3 n\end{array}\right)$ for all integer $n \geq 1$.
4. A sequence is defined by $u_{1}=3$ and $u_{n+1}=2 u_{n}-1$.

Prove by induction that $u_{n}=2^{n}+1$.
5. Prove by induction that $1 \times 3+2 \times 4+3 \times 5+\ldots+n(n+2)=\frac{1}{6} n(n+1)(2 n+7)$.
6. Prove by induction that $7^{n}-3^{n}$ is a multiple of 4 for all positive integers n.
7. $\mathbf{A}=\left(\begin{array}{cc}7 & 9 \\ -4 & -5\end{array}\right)$

Prove by induction that $\mathbf{A}^{n}=\left(\begin{array}{cc}1+6 n & 9 n \\ -4 n & 1-6 n\end{array}\right)$ for all integer $n \geq 1$.
8. A sequence is defined by $u_{1}=1$ and $u_{n+1}=3 u_{n}-4$.

Prove by induction that $u_{n}=2-3^{n-1}$.
9. Prove by induction that $1 \times 3+2 \times 5+3 \times 6+\ldots+n(2 n+1)=\frac{1}{6} n(n+1)(4 n+5)$.
10. Prove by induction that $7^{n}+4^{n}+1$ is a multiple of 6 for all positive integers n.

Edexcel AS FM Series 2 Section test solutions

Solutions to section test

1. Prove by induction that $3+5+7+\ldots+(2 n+1)=n(n+2)$.

For $n=1$, LHS $=3$, RHS $=1 \times 3=3$
so true for $n=1$.

Assume true for $n=k$, so $\sum_{r=1}^{k}(2 r+1)=k(k+2)$
For $n=k+1$,

$$
\begin{aligned}
\sum_{r=1}^{k+1}(2 r+1) & =k(k+2)+[2(k+1)+1] \\
& =k^{2}+4 k+3 \\
& =(k+1)(k+3) \\
& =(k+1)((k+1)+2)
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
2. Prove by induction that $5^{n}-2^{n}$ is a multiple of 3 for all positive integers n.

For $n=1,5^{n}-2^{n}=5-2=3$ which is a multiple of 3
so true for $n=1$.

Assume true for $n=k$, so $5^{k}-2^{k}=3 p$ for some positive integer p.
For $n=k+1$,

$$
\begin{aligned}
5^{k+1}-2^{k+1} & =5 \times 5^{k}-2 \times 2^{k} \\
& =5\left(2^{k}+3 p\right)-2 \times 2^{k} \\
& =3 \times 2^{k}+15 p
\end{aligned}
$$

Both terms are multiples of 3 , so $5^{k+1}-2^{k+1}$ is a multiple of 3 .
So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
3. $A=\left(\begin{array}{ll}4 & -1 \\ 9 & -2\end{array}\right)$

Prove by induction that $A^{n}=\left(\begin{array}{cc}1+3 n & -n \\ 9 n & 1-3 n\end{array}\right)$ for all integer $n \geq 1$.

For $n=1, A=\left(\begin{array}{cc}1+3 & -1 \\ 9 & 1-3\end{array}\right)=\left(\begin{array}{ll}4 & -1 \\ 9 & -2\end{array}\right)$

Edexcel AS FM Series 2 Section test solutions

So true for $n=1$.
Assume true for $n=k$, so $A^{k}=\left(\begin{array}{cc}1+3 k & -k \\ 9 k & 1-3 k\end{array}\right)$
For $n=k+1$,

$$
\begin{aligned}
A^{k+1} & =\left(\begin{array}{cc}
1+3 k & -k \\
9 k & 1-3 k
\end{array}\right)\left(\begin{array}{cc}
4 & -1 \\
9 & -2
\end{array}\right) \\
& =\left(\begin{array}{cc}
4(1+3 k)-9 k & -1(1+3 k)+2 k \\
36 k+9(1-3 k) & -9 k-2(1-3 k)
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 k+4 & -k-1 \\
9 k+9 & -3 k-2
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+3(k+1) & -(k+1) \\
9(k+1) & 1-3(k+1)
\end{array}\right)
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
4. A sequence is defined by $u_{1}=3$ and $u_{n+1}=2 u_{n}-1$.

Prove by induction that $u_{n}=2^{n}+1$.

For $n=1, u_{1}=2^{1}+1=2+1=3$.
so true for $n=1$.
Assume true for $n=k$, so $u_{k}=2^{k}+1$
For $n=k+1$,

$$
\begin{aligned}
u_{k+1} & =2 u_{k}-1 \\
& =2\left(2^{k}+1\right)-1 \\
& =2^{k+1}+2-1 \\
& =2^{k+1}+1
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
5. Prove by induction that

$$
\begin{aligned}
& 1 \times 3+2 \times 4+3 \times 5+\ldots+n(n+2)=\frac{1}{6} n(n+1)(2 n+7) \\
& \text { For } n=1, \text { LHS }=1 \times 3=3, \text { RHS }=\frac{1}{6} \times 1 \times 2 \times 9=3 \\
& \text { So true for } n=1 \text {. }
\end{aligned}
$$

Edexcel AS FM Series 2 Section test solutions

Assume true for $n=k$, so $\sum_{r=1}^{k} r(r+2)=\frac{1}{6} k(k+1)(2 k+7)$
For $n=k+1$

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r+2) & =\frac{1}{6} k(k+1)(2 k+7)+(k+1)((k+1)+2) \\
& =\frac{1}{6}(k+1)[k(2 k+7)+6(k+3)] \\
& =\frac{1}{6}(k+1)\left(2 k^{2}+13 k+18\right) \\
& =\frac{1}{6}(k+1)(k+2)(2 k+9) \\
& =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+7)
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
6. Prove by induction that $7^{n}-3^{n}$ is a multiple of 4 for all positive integers n.

For $n=1,7^{n}-3^{n}=7-3=4$ which is a multiple of 4 so true for $n=1$.

Assume true for $n=k$, so $7^{k}-3^{k}=4 p$ for some positive integer p.
For $n=k+1$,

$$
\begin{aligned}
7^{k+1}-3^{k+1} & =7 \times 7^{k}-3 \times 3^{k} \\
& =7\left(3^{k}+4 p\right)-3 \times 2^{k} \\
& =4 \times 3^{k}+28 p
\end{aligned}
$$

Both terms are multiples of 4 , so $7^{k+1}-3^{k+1}$ is a multiple of 4 .

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
7. $A=\left(\begin{array}{cc}7 & 9 \\ -4 & -5\end{array}\right)$

Prove by induction that $A^{n}=\left(\begin{array}{cc}1+6 n & 9 n \\ -4 n & 1-6 n\end{array}\right)$ for all integer $n \geq 1$.
For $n=1, A^{n}=\left(\begin{array}{cc}1+6 & 9 \\ -4 & 1-6\end{array}\right)=\left(\begin{array}{cc}7 & 9 \\ -4 & -5\end{array}\right)$.
so true for $n=1$.

Assume true for $n=k$, so $A^{k}=\left(\begin{array}{cc}1+6 k & g k \\ -4 k & 1-6 k\end{array}\right)$

Edexcel AS FM Series 2 Section test solutions

For $n=k+1$

$$
\begin{aligned}
A^{k+1} & =\left(\begin{array}{cc}
1+6 k & 9 k \\
-4 k & 1-6 k
\end{array}\right)\left(\begin{array}{cc}
7 & 9 \\
-4 & -5
\end{array}\right) \\
& =\left(\begin{array}{cc}
7(1+6 k)-36 k & 9(1+6 k)-45 k \\
-28 k-4(1-6 k) & -36 k-5(1-6 k)
\end{array}\right) \\
& =\left(\begin{array}{cc}
6 k+7 & 9 k+9 \\
-4 k-4 & -6 k-5
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+6(k+1) & 9(k+1) \\
-4(k+1) & 1-6(k+1)
\end{array}\right)
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
8. A sequence is defined by $u_{1}=1$ and $u_{n+1}=3 u_{n}-4$.

Prove by induction that $u_{n}=2-3^{n-1}$.

For $n=1, u_{1}=2-3^{\circ}=2-1=1$.
so true for $n=1$.

Assume true for $n=k$, so $u_{k}=2-3^{k-1}$
For $n=k+1$,

$$
\begin{aligned}
u_{k+1} & =3\left(2-3^{k-1}\right)-4 \\
& =6-3^{k}-4 \\
& =2-3^{k+1-1}
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
9. Prove by induction that
$1 \times 3+2 \times 5+3 \times 6+\ldots+n(2 n+1)=\frac{1}{6} n(n+1)(4 n+5)$.

For $n=1$, LHS $=1 \times 3=3$, RHS $=\frac{1}{6} \times 1 \times 2 \times 9=3$
so true for $n=1$.

Assume true for $n=k$, so $\sum_{r=1}^{k} r(2 r+1)=\frac{1}{6} k(k+1)(4 k+5)$
For $n=k+1$,

Edexcel AS FM Series 2 Section test solutions

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(2 r+1) & =\frac{1}{6} k(k+1)(4 k+5)+(k+1)(2(k+1)+1) \\
& =\frac{1}{6}(k+1)[k(4 k+5)+6(k+1)(2 k+3)] \\
& =\frac{1}{6}(k+1)\left(4 k^{2}+17 k+18\right) \\
& =\frac{1}{6}(k+1)(k+2)(4 k+9) \\
& =\frac{1}{6}(k+1)(k+2)(4(k+1)+5)
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.
10. Prove by induction that $7^{n}+4^{n}+1$ is a multiple of 6 for all positive integers n.

For $n=1,7^{n}+4^{n}+1=7+4+1=12$ which is a multiple of 6 So true for $n=1$.

Assume true for $n=k$, so $7^{k}+4^{k}+1=6 p$ for some positive integer p.
For $n=k+1$,

$$
\begin{aligned}
7^{k+1}+4^{k+1}+1 & =7 \times 7^{k}+4 \times 4^{k}+1 \\
& =7\left(6 p-1-4^{k}\right)+4 \times 4^{k}+1 \\
& =42 p-6-3 \times 4^{k}
\end{aligned}
$$

Since 4^{k} is even, all three terms are multiples of 6 , so $7^{k+1}+4^{k+1}+1$ is a multiple of 6 .

So if the result is true for $n=k$, then it is true for $n=k+1$, and as it is true for $n=1$ it is true for all integer values of $n \geq 1$ by induction.

