Edexcel AS Further Mathematics Inverse matrices "integral"

Section 3: Matrices and simultaneous equations

Section test

1.	Which of the following sets of equations are consistent?					
	(i) $3x - 2y = 6$	(ii)	-3x + 2y = -1	(iii)	3x - 2y = 1	
	2x + y = 4		9x - 6y = -3		2x - y = 1	
2.	The equations					
	3x - y = 4					
	2y - 6x = 1					
	have					
(a) no solutions		(b) a unique solution				
(c) infinitely many solutions			(d) two solutions			

3. A point P in three dimensional space is mapped to the point (-3, 2, 3) by the matrix $\begin{pmatrix} 1 & 1 & 2 \\ 3 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$. Find the coordinates of P.

Questions 4 and 5 are about the matrices

	(3	1	4	(-2	8-k	1)
$\mathbf{A} =$	2	0	1,	$\mathbf{B} = \begin{vmatrix} 1 - 2k \end{vmatrix}$	3k - 4	5
	(1)	2	k	4	-5	-2)

- 4. By calculating the matrix **AB**, find the value of k for which the matrix **A** has no inverse matrix.
- 5. In the case for which k = 5, find the solution of the matrix equation

	(x)		(1)	
A	y	=	0	
	(z)		(-2)	

6. Match the sets of simultaneous equations with the geometrical arrangements of three planes.

А	2x + 3y - z = 1	В	x + 2y + 3z = 1
	x - 2y + 3z = 2		4x + 3y + 2z = 0
	-2x - 3y + z = 4		x + 3y + 3y = 2

Edexcel AS FM Inverse matrices 3 section test solns

C x+2y+3z=2 x+4y-z=1 x+3y+z=3E 5x+4y+z=-4 3x+y+2z=6 x-y+2z=10(i) Planes meet at a single point (ii) Sheaf of planes

(ii) Triangular prism (iv) Three parallel planes

(v) Two parallel planes with the third intersecting them

Solutions to section test

1. (i) The equations can be written as the matrix equation

 $\begin{pmatrix} 3 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}.$

 $det\begin{pmatrix} 3 & -2\\ 2 & 1 \end{pmatrix} = 7$, so the equations have a unique solution, and therefore

they are consistent.

(ii) The equations can be written as the matrix equation

 $\begin{pmatrix} -3 & 2 \\ 9 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$ $det \begin{pmatrix} -3 & 2 \\ 9 & -6 \end{pmatrix} = 0, \text{ so the equations do not have a unique solution.}$

The second equation can be divided by -3 to give -3x + 2y = 1. This contradicts the first equation, so the equations are inconsistent. (iii) The equations can be written as the matrix equation

 $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $det \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} \neq 0, \text{ so the equations have a unique solution, and so are}$

consístent.

2. The equations can be written as the matrix equation $\begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$

 $det\begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix} = 0$, so the equations do not have a unique solution.

The first equation gives y = 3x - 4

The second equation gives $y = 3x + \frac{1}{2}$

so the equations are inconsistent, and therefore have no solution.

3.
$$\begin{pmatrix} 1 & 1 & 2 \\ 3 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \\ 3 \end{pmatrix}$$

Inverse matrix is
$$\begin{pmatrix} 0.1 & 0.2 & 0.3 \\ -0.1 & -0.2 & 0.7 \\ 0.5 & 0 & -0.5 \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0.1 & 0.2 & 0.3 \\ -0.1 & -0.2 & 0.7 \\ 0.5 & 0 & -0.5 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$

Edexcel AS FM Inverse matrices 3 section test solns

P is the point (1, 2, -3)

4.
$$\begin{pmatrix} 3 & 1 & 4 \\ 2 & 0 & 1 \\ 1 & 2 & k \end{pmatrix} \begin{pmatrix} -2 & 8-k & 1 \\ 1-2k & 3k-4 & 5 \\ 4 & -5 & -2 \end{pmatrix} = \begin{pmatrix} 11-2k & 0 & 0 \\ 0 & 11-2k & 0 \\ 0 & 0 & 11-2k \end{pmatrix}$$

The inverse of A is therefore $\frac{1}{11-2k}$ B
A has no inverse in the case for which $11-2k=0$
 $k=5.5$

5. In the case for which k = 5, $A^{-1} = B = \begin{pmatrix} -2 & 3 & 1 \\ -9 & 11 & 5 \\ 4 & -5 & -2 \end{pmatrix}$ $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 & 3 & 1 \\ -9 & 11 & 5 \\ 4 & -5 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} -4 \\ -19 \\ 8 \end{pmatrix}$ The solution of the equation is x = -4, y = -19, z = 8.

- 6. A (V)
 - B (í)
 - C (ííí)
 - D (ív)
 - E (íí)