Edexcel AS Further Mathematics Matrices

Section 2: Matrices and transformations

Section test

1. The matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ represents the transformation
(a) Reflection in the line $y=-x$
(b) Rotation through 180° about the origin
(c) Reflection in the line $y=x$
(d) Rotation through 90° clockwise about the origin
2. The matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ represents the transformation
(a) Reflection in the x axis
(b) Reflection in the y axis
(c) Rotation through 90° anticlockwise about the origin
(d) Rotation through 90° clockwise about the origin
3. A two-way stretch, scale factor 4 in the x direction and scale factor 2 in the y direction is represented by the matrix
(a) $\left(\begin{array}{ll}0 & 4 \\ 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right)$
(c) $\left(\begin{array}{ll}0 & 2 \\ 4 & 0\end{array}\right)$
(d) $\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right)$
4. A reflection in the x axis is represented by the matrix
(a) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
(b) $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(d) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
5. Which of these matrices represent rotations?
$\mathbf{A}=\left(\begin{array}{cc}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{cc}-0.8 & 0.6 \\ -0.6 & -0.8\end{array}\right)$
$\mathbf{C}=\left(\begin{array}{cc}0.8 & 0.6 \\ 0.6 & -0.8\end{array}\right)$
$\mathbf{D}=\left(\begin{array}{cc}-0.8 & 0.6 \\ 0.6 & -0.8\end{array}\right)$
$\mathbf{E}=\left(\begin{array}{cc}0.8 & 0.6 \\ -0.6 & 0.8\end{array}\right)$

Edexcel AS FM Matrices 2 Section test solutions

6. A triangle has vertices $\mathrm{A}(2,0), \mathrm{B}(3,1)$ and $\mathrm{C}(-1,3)$

The triangle is transformed using the matrix $\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)$.
What are the vertices of the image?
7. In a transformation, the point $(1,0)$ is mapped to $(1,4)$ and the point $(0,1)$ is mapped to itself.
What is the image of the point $(-2,3)$?
8. The matrix $\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ represents which of the following transformations?
(a) reflection in $x=0$
(b) reflection in $y=0$
(c) reflection in $z=0$
(d) rotation through 90° clockwise about the x-axis
(e) rotation through 90° clockwise about the y-axis
(f) rotation through 90° clockwise about the z-axis

In Questions $9-10$, the transformation A is represented by the matrix $\mathbf{A}=\left(\begin{array}{cc}2 & 0 \\ -1 & 3\end{array}\right)$ and the transformation B is represented by the matrix $\mathbf{B}=\left(\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right)$
9. The composite transformation "A followed by B" is represented by the matrix
(a) $\left(\begin{array}{ll}2 & -4 \\ 5 & -7\end{array}\right)$
(b) $\left(\begin{array}{cc}2 & 4 \\ -7 & -11\end{array}\right)$
(c) $\left(\begin{array}{cc}0 & 6 \\ -1 & -9\end{array}\right)$
(d) $\left(\begin{array}{cc}0 & 7 \\ -6 & -9\end{array}\right)$
10. The composite transformation " \boldsymbol{B} followed by \boldsymbol{A} " is represented by the matrix
(a) $\left(\begin{array}{ll}2 & -4 \\ 5 & -7\end{array}\right)$
(b) $\left(\begin{array}{cc}2 & 4 \\ -7 & -11\end{array}\right)$
(c) $\left(\begin{array}{cc}0 & 6 \\ -1 & -9\end{array}\right)$
(d) $\left(\begin{array}{cc}0 & 7 \\ -6 & -9\end{array}\right)$

Edexcel AS FM Matrices 2 Section test solutions

Solutions to section test

1. $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\binom{a}{b}=\binom{-a}{-b}$ so the image of (a, b) is $(-a,-b)$. The matrix represents a rotation of 180° about the origin.

2. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{a}{b}=\binom{-b}{a}$ so the image of (a, b) is $(-b, a)$ The matrix represents a rotation through 90° anticlockwise about the origin.

3. Under a two-way stretch, scale factor 4 in the x direction and scale factor 2 in the y direction, the point $(1,0)$ is mapped to $(4,0)$ and the point $(0,1)$ is mapped to $(0,2)$.
So the matrix representing this transformation is $\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right)$.
4. Under a reflection in the x-axis, the point $(1,0)$ is mapped to itself, and the point $(0,1)$ is mapped to $(0,-1)$.
so the matrix representing this transformation is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
5. The general rotation matrix is $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

So the elements on the leading diagonal must be the same, with the same sign. This is the case in matrices A, B, D and E.
The elements on the other diagonal must be the same but have opposite signs. This is the case in matrices A, B and E.
so the matrices which represent rotations are A, B and E.
6. $\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)\left(\begin{array}{lll}2 & 3 & -1 \\ 0 & 1 & 3\end{array}\right)=\left(\begin{array}{lll}4 & 7 & 1 \\ 6 & 13 & 9\end{array}\right)$

The vertices of the image are $A^{\prime}(4,6), B^{\prime}(7,13)$ and $C^{\prime}(1,9)$.

Edexcel AS FM Matrices 2 Section test solutions

7. The matrix for the transformation is $\left(\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right)$
$\left(\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right)\binom{-2}{3}=\binom{-2}{-5}$
so the image of $(-2,3)$ is $(-2,-5)$
8. Rotation about the y-axis through 90° clockwise.
9. The composite transformation "A followed by B " is represented by the matrix

$$
B A=\left(\begin{array}{cc}
1 & 2 \\
-2 & -3
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
-1 & 3
\end{array}\right)=\left(\begin{array}{cc}
0 & 6 \\
-1 & -9
\end{array}\right)
$$

10. The composite transformation " B followed by A " is represented by the matrix

$$
A B=\left(\begin{array}{cc}
2 & 0 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-2 & -3
\end{array}\right)=\left(\begin{array}{cc}
2 & 4 \\
-7 & -11
\end{array}\right)
$$

