Edexcel AS Further Maths Complex numbers

Section 2: Loci in the complex plane

Section test

Questions 1-3 are about the following loci:
P: $|z-3-4 i|=2$
$\mathrm{Q}:|z-3-4 \mathrm{i}|=|z|$
$\mathrm{R}: \arg (z-3-4 \mathrm{i})=\frac{\pi}{3}$

1. Which of the loci above represent a circle?
2. Which of the loci above represent a straight line (or part of a straight line)?
3. Which of the loci above are satisfied by the point $3+4 \mathrm{i}$?
4. Describe the set of points for which $|z-2+3 i|=4$.
5.

The shaded area in the Argand diagram represents the points z for which
(a) $|z-2+i| \leq 2$
(b) $|z-2+i|<2$
(c) $|z+2-\mathrm{i}|<2$
(d) $|z+2-\mathrm{i}| \leq 2$
6.

Edexcel AS FM Complex nos 2 section test solns

The bold half-line in the diagram above shows the set of points z for which
(a) $\arg (z-1-2 \mathrm{i})=-\frac{\pi}{4}$
(b) $\arg (z-1-2 \mathrm{i})=\frac{\pi}{4}$
(c) $\arg (z+1+2 \mathrm{i})=-\frac{\pi}{4}$
(d) $\arg (z+1+2 \mathrm{i})=\frac{\pi}{4}$
7.

The shaded area in the diagram above shows the set of points z for which
(a) $\arg (z+1-i) \leq \frac{2 \pi}{3}$
(b) $\arg (z-1+\mathrm{i}) \leq \frac{2 \pi}{3}$
(c) $0 \leq \arg (z-1+\mathrm{i}) \leq \frac{2 \pi}{3}$
(d) $0 \leq \arg (z+1-\mathrm{i}) \leq \frac{2 \pi}{3}$
8. Match the diagrams below with the following loci:
(i) $|z-2|<|z-i|$
(ii) $|z-2|>|z-i|$
(iii) $|z+2|<|z+\mathrm{i}|$
(iv) $|z+2|>|z+\mathrm{i}|$

Edexcel AS FM Complex nos 2 section test solns

9. The sketch, on an Argand diagram, of the locus of points satisfying $|z-3|=|z+1-4 i|$ is
(a) the line joining the points $(3,0)$ and $(-1,4)$
(b) the line joining the points $(3,0)$ and $(1,-4)$
(c) the line joining the points $(-1,0)$ and $(1,2)$
(d) the line joining the points $(-3,0)$ and $(1,-4)$
10. Find the complex number which satisfies both $|z|=2$ and $|z-i|=|z-3 i|$.

Edexcel AS FM Complex nos 2 section test solns

Solutions to section test

1. For P, z represents all points whose distance from the point $3+4 i$ is 2 . This means that P is a circle.

For Q, z represents all points whose distance from the point $3+4 i$ is equal to its distance from the origin. This means that Qis the perpendicular bisector of a line joining the origin and the point $3+4 i$.

For R, z represents all points for which a line from the point to $3+4 i$ makes an angle of $\frac{\pi}{3}$ with the real axis. This is the half-line from the point $3+4 i \mathrm{in}$ the direction making an angle of $\frac{\pi}{3}$ with the real axis.

Therefore P represents a circle.
2. From the solution to question 1, Q is a straight line since it is a perpendicular bisector, and R is a half-line so is part of a straight line.
3. The point $3+4 i$ is the centre of the circle represented by P, so it does not lie on the circle itself.
For Q, for the point $3+4 i$ the value of $|z-3-4 i|$ is zero, but the value of $|z|$ is 5 , so $3+4 i$ cannot lie on this locus.
R represents a line starting from $3+4 i$, but the point $3+4 i$ is not part of the locus since the argument of zero is not defined.
Therefore the point does not lie on any of the loci.
4. $|z-2+3 i|=4$
$|z-(2-3 i)|=4$
This means that the distance of the point z from the point $2-3 i$ is always 4.
Therefore the set of points is a circle, centre $2-3 i$, radius 4.
5. The shaded area is the area inside the circle with centre $(2,-1)$ and radius 2. So this is the locus of a point z whose distance from the point $2-i$ is always less than 2.

This is the set of points given by $|z-(2-i)|<2$ $|z-2+i|<2$

Edexcel AS FM Complex nos 2 section test solns

6. The line starts from the point $1+2 i$ and goes in the direction $-\frac{\pi}{4}$. The set of points is therefore $\arg (z-(1+2 i))=-\frac{\pi}{4}$

$$
\arg (z-1-2 i)=-\frac{\pi}{4}
$$

7. The lines bounding the region both start from the point $-1+i$ and have directions O and $\frac{2 \pi}{3}$ respectively.
These lines are given by $\arg (z+1-i)=0$ and $\arg (z+1-i)=\frac{2 \pi}{3}$.
so the shaded region is given by

$$
0 \leq \arg (z+1-i) \leq \frac{2 \pi}{3}
$$

8. (i) This locus represents the points nearer to $(2,0)$ than to $(0,1)$. This is diagram C
(ii) This locus represents the points nearer to $(0,1)$ than to $(2,0)$. This is diagram B
(iii) This locus represents the points nearer to $(-2,0)$ than to $(0,-1)$. This is diagram A
(iv) This locus represents the points nearer to $(0,-1)$ than to $(-2,0)$. This is diagram D
9. $|z-3|=|z+1-4 i|$
$|z-3|=|z-(-1+4 i)|$
This means that the distance of the point representing z from the point representing 3 (the point $(3,0)$) is equal to the distance of the point representing z from the point representing $-1+4 i$ (the point $(-1,4)$). The locus of z is therefore the perpendicular bisector of the points $(3,0)$ and $(-1,4)$.
The midpoint of $(3,0)$ and $(-1,4)$ is $(1,2)$, so the locus passes through $(1,0)$.

The gradient of the line joining $(3,0)$ and $(-1,4)$ is $\frac{4}{-4}=-1$, so the gradient of the perpendicular bisector ís 1.
The equation of the perpendicular bisector is therefore $y-2=x-1$

$$
y=x+1
$$

The locus is therefore the line joining any two points satisfying $y=x+1$, such as $(-1,0)$ and $(1,2)$.

Edexcel AS FM Complex nos 2 section test solns

10. The locus $|z|=2$ represents a circle centre the origin, radius 2 , and the locus $|z-i|=|z-3 i|$ represents the perpendicular bisector of the points i and $3 i$.

From the diagram it can be seen that the point which satisfies both equations is $(0,2)$, i.e. the complex number 2i.

