Section 1: Modulus and argument

Section test

1. The modulus of the complex number $z=2-5 \mathrm{i}$ is
(a) $\sqrt{29}$
(b) 29
(c) 7
(d) $\sqrt{7}$
2. The principal argument of the complex number $-1+\sqrt{3} \mathrm{i}$ is
(a) $\frac{2 \pi}{3}$
(b) $-\frac{2 \pi}{3}$
(c) $\frac{\pi}{3}$
(d) $-\frac{\pi}{3}$
3. The principal argument of the complex number $2-2 \mathrm{i}$ is
(a) $\frac{\pi}{4}$
(b) $\frac{3 \pi}{4}$
(c) $-\frac{\pi}{4}$
(d) $-\frac{3 \pi}{4}$
4. Find the complex number with modulus 2 and argument -1.5 .
5. The modulus and principal argument of the complex number $z=-2(\cos \alpha-\mathrm{i} \sin \alpha)\left(\right.$ where $\left.0<\alpha \leq \frac{\pi}{2}\right)$ are, respectively,
(a) $2,-\alpha$
(b) $2, \pi-\alpha$
(c) $-2, \alpha$
(d) $2, \alpha+\pi$

Questions 6 and 7 are about the complex numbers $z=5\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)$ and $w=\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}$.
6. The complex number $w z$ is given by
(a) $6\left(\cos \frac{\pi^{2}}{9}+\mathrm{i} \sin \frac{\pi^{2}}{9}\right)$
(b) $6\left(\cos \frac{5 \pi}{6}+\mathrm{i} \sin \frac{5 \pi}{6}\right)$
(c) $5\left(\cos \frac{\pi^{2}}{9}+\mathrm{i} \sin \frac{\pi^{2}}{9}\right)$
(d) $5\left(\cos \frac{5 \pi}{6}+\mathrm{i} \sin \frac{5 \pi}{6}\right)$

Edexcel AS FM Complex nos 1 section test solns

7. The complex number $\frac{z}{w}$ is given by
(a) $5\left(\cos \frac{5 \pi}{6}+\mathrm{i} \sin \frac{5 \pi}{6}\right)$
(b) $4\left(\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}\right)$
(c) $5\left(\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}\right)$
(d) $4\left(\cos \frac{5 \pi}{6}+\mathrm{i} \sin \frac{5 \pi}{6}\right)$

Questions 8, 9 and 10 are about the Argand diagram below which shows three concentric circles, all centred at the origin, with radii 2,4 and 8 .

8. Which point represents the result of cubing the complex number at A ?
9. Which point represents the result of multiplying the complex number at A by the complex number at B ?
10. Which point represents the result of dividing the complex number at F by the complex number at D ?

Edexcel AS FM Complex nos 1 section test solns

Solutions to section test

1. $|2-5 i|=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
2. $z=-1+\sqrt{3 i}$ is in the second quadrant.

Principal argument $=\arctan \left(\frac{\sqrt{3}}{-1}\right)+\pi$

$$
\begin{aligned}
& =-\frac{\pi}{3}+\pi \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

3. $z=2-2 i$ is in the fourth quadrant.

Principal argument $=\arctan \left(\frac{-2}{2}\right)=\arctan (-1)=-\frac{\pi}{4}$
4. Let $z=x+i y$
$r=2, \quad \theta=-1.5$
$x=r \cos \theta=2 \cos (-1.5)=0.14$ (2 d.p.)
$y=r \sin \theta=2 \sin (-1.5)=-1.99$ (2 d.p.)
The complex number with modulus 2 and argument -1.5 is $0.14-1.99^{i}$
5. $z=-2(\cos \alpha-i \sin \alpha)$

$$
\begin{aligned}
& =2(-\cos \alpha+i \sin \alpha) \\
& =2(\cos (\pi-\alpha)+i \sin (\pi-\alpha))
\end{aligned}
$$

The modulus of z is 2 and the argument is $\pi-\alpha$.
6. $|z|=5$ and $\arg z=\frac{2 \pi}{3}$
$|w|=1$ and $\arg w=\frac{\pi}{6}$
$|w z|=|w||z|=1 \times 5=5$
$\arg (w z)=\arg w+\arg z=\frac{2 \pi}{3}+\frac{\pi}{6}=\frac{5 \pi}{6}$
$w z=5\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$

Edexcel AS FM Complex nos 1 section test solns

7. $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}=\frac{5}{1}=5$
$\arg \frac{z}{w}=\arg z-\arg \omega=\frac{2 \pi}{3}-\frac{\pi}{6}=\frac{\pi}{2}$
$\frac{z}{w}=5\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
8. The complex number at A has modulus 2 and $\operatorname{argument} \frac{\pi}{2}$. The cube of the complex number at A has modulus $2^{3}=8$ and argument $3 \times \frac{\pi}{2}=\frac{3 \pi}{2}$ So the cube of the complex number at A is the complex number at F.
9. The complex number at A has modulus 2 and argument $\frac{\pi}{2}$, and the complex number at B has modulus 4 and argument $\frac{\pi}{2}$. When the complex number at A is multiplied by the complex number at B, the length of vector $O A$ is multiplied by 4 and it is rotated through $\frac{\pi}{2}$ in an anticlockwise direction, resulting in the vector $O E$. So the result of multiplying the complex number at A by the complex number at B is the complex number at E.
10. The complex number at F has modulus 8 and argument $-\frac{\pi}{2}$. The complex number at D has modulus 4 and argument $-\frac{\pi}{2}$. When the complex number at F is divided by the complex number at D, the length of vector of is divided by 4 and is rotated through an angle of $-\frac{\pi}{2}$ clockwise, i.e. $\frac{\pi}{2}$ anticlockwise, resulting in the vector $O H$. So the result of dividing the complex number at F by the complex number at D is the complex number at H.
