

Section 1: Modulus and argument

Section test

1. The modulus of the complex number	z = 2 - 5i is
(a) $\sqrt{29}$	(b) 29
(c) 7	(d) $\sqrt{7}$

- 2. The principal argument of the complex number $-1 + \sqrt{3}$ i is (a) $\frac{2\pi}{3}$ (b) $-\frac{2\pi}{3}$ (c) $\frac{\pi}{3}$ (d) $-\frac{\pi}{3}$
- 3. The principal argument of the complex number 2 2i is (a) $\frac{\pi}{4}$ (b) $\frac{3\pi}{4}$ (c) $-\frac{\pi}{4}$ (d) $-\frac{3\pi}{4}$
- 4. Find the complex number with modulus 2 and argument -1.5.
- 5. The modulus and principal argument of the complex number $z = -2(\cos \alpha i \sin \alpha)$ (where $0 < \alpha \le \frac{\pi}{2}$) are, respectively, (a) 2, $-\alpha$ (b) 2, $\pi - \alpha$ (c) -2, α (d) 2, $\alpha + \pi$

Questions 6 and 7 are about the complex numbers $z = 5\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$ and π

 $w = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}.$

6. The complex number wz is given by

(a)
$$6\left(\cos\frac{\pi^2}{9} + i\sin\frac{\pi^2}{9}\right)$$

(b) $6\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$
(c) $5\left(\cos\frac{\pi^2}{9} + i\sin\frac{\pi^2}{9}\right)$
(d) $5\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$

Edexcel AS FM Complex nos 1 section test solns

7. The complex number $\frac{z}{w}$ is given by (a) $5\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$ (b) $4\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$ (c) $5\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$ (d) $4\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$

Questions 8, 9 and 10 are about the Argand diagram below which shows three concentric circles, all centred at the origin, with radii 2, 4 and 8.

- 8. Which point represents the result of cubing the complex number at A?
- 9. Which point represents the result of multiplying the complex number at A by the complex number at B?
- 10. Which point represents the result of dividing the complex number at F by the complex number at D?

Solutions to section test

- 1. $|2-5i| = \sqrt{2^2+5^2} = \sqrt{29}$
- 2. $z = -1 + \sqrt{3}i$ is in the second quadrant. Principal argument = $\arctan\left(\frac{\sqrt{3}}{-1}\right) + \pi$ $= -\frac{\pi}{3} + \pi$ $= \frac{2\pi}{3}$
- 3. z = 2 2i is in the fourth quadrant. Principal argument = $\arctan\left(\frac{-2}{2}\right) = \arctan(-1) = -\frac{\pi}{4}$
- 4. Let z = x + iy r = 2, $\theta = -1.5$ $x = r \cos \theta = 2\cos(-1.5) = 0.14$ (2 d.p.) $y = r \sin \theta = 2\sin(-1.5) = -1.99$ (2 d.p.) The complex number with modulus 2 and argument -1.5 is 0.14 - 1.99i

5.
$$z = -2(\cos \alpha - i \sin \alpha)$$
$$= 2(-\cos \alpha + i \sin \alpha)$$
$$= 2(\cos(\pi - \alpha) + i \sin(\pi - \alpha))$$
The modulus of z is 2 and the argument is $\pi - \alpha$.

6.
$$|z| = 5$$
 and $\arg z = \frac{2\pi}{3}$
 $|w| = 1$ and $\arg w = \frac{\pi}{6}$
 $|wz| = |w||z| = 1 \times 5 = 5$
 $\arg(wz) = \arg w + \arg z = \frac{2\pi}{3} + \frac{\pi}{6} = \frac{5\pi}{6}$
 $wz = 5\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$

Edexcel AS FM Complex nos 1 section test solns

- 8. The complex number at A has modulus 2 and argument $\frac{\pi}{2}$. The cube of the complex number at A has modulus $2^3 = 8$ and argument $3 \times \frac{\pi}{2} = \frac{3\pi}{2}$ So the cube of the complex number at A is the complex number at F.
- 9. The complex number at A has modulus 2 and argument $\frac{\pi}{2}$, and the complex number at B has modulus 4 and argument $\frac{\pi}{2}$. When the complex number at A is multiplied by the complex number at B, the length of vector OA is multiplied by 4 and it is rotated through $\frac{\pi}{2}$ in an anticlockwise direction, resulting in the vector OE. So the result of multiplying the complex number at A by the complex number at B is the complex number at E.
- 10. The complex number at F has modulus 8 and argument $-\frac{\pi}{2}$. The complex number at D has modulus 4 and argument $-\frac{\pi}{2}$. When the complex number at F is divided by the complex number at D, the length of vector OF is divided by 4 and is rotated through an angle of $-\frac{\pi}{2}$ clockwise, i.e. $\frac{\pi}{2}$ anticlockwise, resulting in the vector OH. So the result of dividing the complex number at F by the complex number at D is the complex number at H.