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Section 2: Complex roots of polynomials 
 

Notes and Examples 
 
These notes contain subsections on 

 Complex numbers and equations 

 Solving equations with complex roots 
 
 

Complex numbers and equations 
 
You now know from your work on complex numbers that every quadratic 
equation has exactly two solutions, if you count repeated roots and complex 
roots. 
 
There are two possibilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a cubic equation, there are also two possibilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The graph crosses the x axis twice. 
There are two real distinct roots. 
If the graph just touches the axis, 
then the root is repeated, but this 
still counts as two roots.  
 

 
 
 
The graph does not cut 
the x axis. There are two 
complex roots which are 
a conjugate pair. 

 
 
The graph cuts the x axis three times. In the 
diagram there are three real distinct roots. 
However, two of the roots could be the same, 
in which case the graph would touch the axis 
at one of the turning points, or all three roots 
could be the same, in which case there would 
be a point of inflection on the x axis. 

 
 
Here the graph cuts the x axis 
only once. There is one real root, 
and there is also a conjugate pair 
of complex roots. 
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You can see graphically that a cubic equation must have at least one real 
root. If the term in x³ is positive, then for large positive values of x the value of 
the function is large and positive, and for large negative values of x the value 
of the function is large and negative. (If the term in x³ is negative, this is 
reversed). So all cubic graphs must cut the x axis at least once. 
 
Of course, the real root may not be an integer or even a rational number, so 
you may not be able to find it! However, any cubic equations you meet in this 
section will have a simple real root, so that you can solve it. 
 
A formula does exist for solving all cubic equations, but it is extremely 
complicated.  
 
For quartic equations, there are three possibilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is, again, an extremely complicated formula for the roots of a quartic 
equation. 
 
For higher degree equations, there are no general formulae to find the roots. It 
is not simply that no-one has managed to find them yet: it was proved by 
Galois (a very interesting character) that no such formulae exist for any 
polynomial equations higher than quartic. If there happens to be one or more 
integer root which you can find by trial and error, it may be possible to solve a 
higher degree equation by algebraic methods. Otherwise, there are numerical 
methods which provide approximate solutions. 
 
The main difficulty in proving that any polynomial equation of degree n has 
exactly n roots is proving that any polynomial has at least one root. If you 
assume that a polynomial of degree n has at least one root, then you can 
express the polynomial as a product of a linear factor and a polynomial of 
degree n-1. Then, since the assumption that any polynomial has at least one 
root also holds for the new polynomial of degree n-1, then you can express 
this polynomial as a product of a linear factor and a polynomial of degree n-2. 

 
 
 
There may be two real roots, and 
a conjugate pair of complex 
roots. 

There may be four real 
roots, some of which 
may be repeated. 

 
 
 
There may be no real 
roots. In this case, there 
are two conjugate pairs 
of complex roots. 
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And so on, until the polynomial has been factorised into n linear factors, giving 
n roots. (This applies even if the roots are irrational or complex). 
 
For example, if you know one root of a quintic equation, you can express it as 
the product of a linear factor and a quartic factor. Then since a quartic 
equation must have at least one root, you can express the quartic factor as 
the product of a linear factor and a cubic factor. Since a cubic equation has at 
least one root, you can express the cubic factor as the product of a linear 
factor and a quadratic factor, which can be factorised using the quadratic 
formula. 
 
So, if we can prove that all polynomial equations have one root, then we can 
prove that a polynomial equation of degree n has exactly n roots using the 
method above. (This is an example of proof by induction, in which you show 
that if a statement is true for n, then it is also true for n+1. The proof has been 
stated very informally here: you will learn about proof by induction in another 
topic. Proving that all polynomial equations have at least one root is much 
more difficult: there are a number of approaches, all well beyond ‘A’ level. You 
can use a graphical approach to show that all polynomials of odd degree have 
at least one root, as described above for cubics, however, this is not a 
rigorous proof! 
 
 

Solving equations with complex roots 
 
In practice, the situations you are likely to encounter include 
 

 cubics where you are given one complex root. In this case you can 
deduce a second complex root which is the conjugate of the first. You 

can then use the result   
b

a
 to find the third (real) root. 

 
An alternative approach is to use the two complex roots to find a 
quadratic factor of the cubic. You can then factorise the cubic into the 
quadratic factor and a linear factor (by inspection or polynomial 
division) and deduce the third (real) root from the linear factor. 
However, using the ‘sum of roots’ approach from above is usually 
much more efficient. 
 
See Example 1 below. 

 

 cubics where you are given the real root (or told that an integer root 
exists, which you can find by trial and error). In this case you can 
factorise the cubic into a linear factor and a quadratic factor, by 
inspection or polynomial division, and then use the quadratic formula to 
find the other two roots. 
 
See Example 2 below. 

 



Edexcel AS FM Roots of polys 2 Notes & Examples 

 4 of 6 16/01/17   © MEI 
 integralmaths.org 

 quartics where you are given a complex root. In this case you can 
again deduce a second complex root which is the conjugate of the first, 
and find a quadratic factor. You can then factorise the quartic into two 
quadratics, and use the quadratic formula to find the other two roots 
(which could be real or complex). 
 
See Example 3. 

 

 quartics where you are given one or two real roots, or told that they 
exists. Find the real roots by trial and error if you need to, then factorise 
the quartic into the two known linear factors and a quadratic factor, 
which you can then use to find the other two roots. 

 
 
Example 1 

The roots of the equation 3 27 8 23 30 0   z z z  are α, β and . 
Given that 1 + 2i  is a root of the equation, find the other two roots. 

 

Solution 1 

Since the equation has real coefficients, the complex pairs occur in conjugate pairs. 

Hence, 1 – 2i  is also a root of the equation. 

The sum of the three roots of the equation is 8
7

  (using     
b

a
.) 

So 
8

1 2i 1 2i
7

8
2

7

6

7







    

 

 

  

 

Solution 2 

Two of the roots are 1 + 2i and 1 – 2i. 

So a quadratic factor of the equation is   (1 2i) (1 2i)   z z   

       

   
2 2

2

2

1 2i 1 2i

( 1) (2i)

2 1 4

2 5

    

  

   

  

z z

z

z z

z z

 

So the equation is  
3 2

2

7 8 23 30 0

( 2 5)(7 6) 0

   

   

z z z

z z z

 

So the third root is 
6

7
   

 
 
Notice that Solution 1 is much quicker and easier than Solution 2. However, 
the technique of forming a quadratic from two complex roots is still important 
(see Example 3). 
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Example 2 

The equation 3 2 4 6 0z z z     has an integer root. Find all the roots of the 

equation. 

 

Solution 

Let 3 2f ( ) 4 6

f (1) 1 1 4 6 10

f (2) 8 4 8 6 10

f (3) 27 9 12 6 0

x z z z   

     

     

    

 

Therefore (z – 3) is a factor by the factor theorem. 

 
3 2

2

4 6 0

( 3)( 2 2) 0

z z z

z z z

   

   
 

 

The other roots are the roots of the quadratic equation 2 2 2 0z z   . 

Using the quadratic formula: 

  
2 4 4 1 2

2

2 4

2

2 2i

2

1 i

z
    



  


 


  

 

The roots are 3, -1 + i and -1 – i. 

 
 
 
Example 3 

Show that -2 + i is one root of the quartic equation 4 3 22 2 10 25 0z z z z     , and 

find the other roots. 

 

Solution 

2 2

3

4

2 i

( 2 i) 4 4i 1 3 4i

(3 4i)( 2 i) 6 11i 4 2 11i

( 2 11i)( 2 i) 4 24i 11 7 24i

z

z

z

z

  

       

          

          

 

 

Substituting into 
4 3 22 2 10 25z z z z    : 

7 24i 2( 2 11i) 2(3 4i) 10( 2 i) 25

7 24i 4 22i 6 8i 20 10i 25

0

          

         



 

so -2 + i is a root of the equation. 

 

Since -2 + i is a root, -2 – i is also a root. 

Here the factorising has 
been done by inspection, 
but you can use long 
division if you prefer. 
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Therefore (z + 2 – i) and (z + 2 + i) are both factors. 

So a quadratic factor is 2

2

2

( 2 i)( 2 i) ( 2) 1

4 4 1

4 5

z z z

z z

z z

      

   

  

 

 
4 3 2

2 2

2 2 10 25 0

( 4 5)( 2 5) 0

z z z z

z z z z

    

    
 

 

The other roots are the roots of the quadratic equation 2 2 5 0z z   . 

Using the quadratic formula: 

  
2 4 4 1 5

2

2 16

2

2 4i

2

1 2i

z
   



 





 

 

The roots are -2 – i, -2 + i, 1 + 2i and 1 – 2i. 

 
 
 


