Section 1: Further volumes of revolution

Section test

The volume of the solid obtained by rotating the curve y = 1/√x between x = 1 and x = 2 through 360° about the x-axis is

 (a) π ln 2-1
 (b) π (ln 2-1)
 (c) π ln 2
 (d) π (ln 2+1)

 The volume of the solid obtained when the graph of y = √e^x - 1 between x = 0 and x = 1 is rotated through 360° about the x-axis is given by

 (a) π(e+1)
 (b) πe

- (c) $\pi(e-1)$ (d) $\pi(e-2)$
- 3. The curve $y = \sec x$ between x = 0 and $x = \frac{\pi}{3}$ is rotated through 360° about the *x*-axis. The volume of the solid generated is
- (a) $\frac{2\pi}{\sqrt{3}}$ (b) $\frac{\pi}{2}$ (c) $2\sqrt{3}\pi$ (d) $\sqrt{3}\pi$

4. The volume of the solid obtained by rotating the curve $y = \frac{1}{\sqrt{2x+1}}$ between x = 0 and x = 2 through 360° about the *x*-axis is

- (a) $\frac{1}{2}\pi(\sqrt{5}-1)$ (b) $\pi \ln 5$ (c) $\frac{1}{2}\pi \ln 5$ (d) $\pi(\sqrt{5}-1)$
- 5. The volume of the solid obtained when the graph of $y = \ln(1 + x^2)$ between y = 0and $y = \ln 2$ is rotated through 360° about the y-axis is
- (a) $\int_0^1 \pi [\ln(1+x^2)]^2 dx$ (b) $\pi \int_0^{\ln 2} \sqrt{(e^y-1)} dy$ (c) $\int_0^{\ln 2} (e^y-1) dy$ (d) $\pi \int_0^{\ln 2} (e^y-1) dy$

6. The curve $y = \cos x$ between x = 0 and $x = \frac{\pi}{2}$ is rotated through 360° about the *x*-axis. The volume of the solid generated is

- (a) $\frac{1}{4}\pi$ (b) $\frac{1}{4}\pi^2$
- (c) $\frac{1}{2}\pi^2$ (d) $\frac{1}{4}\pi(\pi+1)$

"integral"

- 7. The curve $y = \frac{1}{\sqrt{x^2 + 1}}$ for x > 0 is rotated through 360° about the *x*-axis. Find the volume of the solid generated.
- 8. The part of the curve $x^4(1+y^2) = 1$ between y = 0 and y = 3 is rotated through 360° about the *y*-axis. Find the volume of the solid generated.
- 9. A curve has parametric equations $x = t^3$, $y = t^2$. The region in the first quadrant bounded by the curve and the line y = 4 is rotated through 360° about the y-axis. Find the volume of the solid generated.
- 10. A curve has parametric equations $x = e^{-2t}$, $y = \sqrt{1-t}$. The region bounded by the curve, the *x*-axis and the line x = 1 is rotated through 360° about the *x*-axis. The volume of the solid generated is
- (a) $\frac{1}{2}\pi(1-e^{-2})$ (b) $\frac{1}{4}\pi(1+e^{-2})$ (c) $\frac{1}{2}\pi(1+e^{-2})$ (d) $\frac{1}{4}\pi(1-e^{-2})$

Solutions to section test

1. Volume
$$= \int_{0}^{2} \pi y^{2} dx = \pi \int_{1}^{2} \left(\frac{1}{\sqrt{x}}\right)^{2} dx$$
$$= \pi \int_{1}^{2} \frac{1}{x} dx$$
$$= \pi [\ln x]_{1}^{2}$$
$$= \pi (\ln 2 - \ln 1)$$
$$= \pi \ln 2$$

2. Volume =
$$\int_{o}^{1} \pi y^{2} dx$$

= $\pi \int_{o}^{1} (e^{x} - 1) dx$
= $\pi [e^{x} - x]_{o}^{1}$
= $\pi (e - 1 - 1 + 0)$
= $\pi (e - 2)$

3.
$$V = \int_{o}^{\frac{\pi}{3}} \pi y^{2} dx$$
$$= \pi \int_{o}^{\frac{\pi}{3}} \sec^{2} x dx$$
$$= \pi [\tan x]_{o}^{\frac{\pi}{3}}$$
$$= \pi \tan \frac{\pi}{3}$$
$$= \sqrt{3}\pi$$

4. Volume
$$= \int_{0}^{2} \pi y^{2} dx = \pi \int_{0}^{2} \left(\frac{1}{\sqrt{2x+1}} \right) dx$$

 $= \pi \int_{0}^{2} \frac{1}{2x+1} dx$
 $= \pi \left[\frac{1}{2} \ln (2x+1) \right]_{0}^{2}$
 $= \frac{1}{2} \pi (\ln 5 - \ln 1)$
 $= \frac{1}{2} \pi \ln 5$

5.
$$y = \ln(1 + x^2) \implies e^{y} = 1 + x^2 \implies x^2 = e^{y} - 1$$

 $\forall olume = \int_{0}^{\ln 2} \pi x^2 dy$
 $= \pi \int_{0}^{\ln 2} (e^{y} - 1) dy$

6.
$$V = \int_{0}^{\frac{\pi}{2}} \pi y^{2} dx$$

 $= \pi \int_{0}^{\frac{\pi}{2}} \cos^{2} x dx$
 $= \pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (1 + \cos 2x) dx$
 $= \frac{1}{2} \pi [x + \frac{1}{2} \sin 2x]_{0}^{\frac{\pi}{2}}$
 $= \frac{1}{2} \pi (\frac{\pi}{2} + \frac{1}{2} \sin \pi - 0)$
 $= \frac{1}{4} \pi^{2}$

$$\mathcal{F}. \quad \mathcal{V} = \int_{o}^{\infty} \pi y^{2} \, dx$$
$$= \pi \int_{o}^{\infty} \frac{1}{x^{2} + 1} \, dx$$
$$= \pi [\arctan x]_{o}^{\infty}$$
$$= \pi \times \frac{\pi}{2}$$
$$= \frac{\pi^{2}}{2} = 4.93 \text{ (3 s.f.)}$$

8.
$$V = \int_{0}^{3} \pi x^{2} dy$$
$$= \pi \int_{0}^{3} \frac{1}{\sqrt{1 + y^{2}}} dx$$
$$= \pi \left[\ln \left(y + \sqrt{y^{2} + 1} \right) \right]_{0}^{3}$$
$$= \pi \left(\ln (3 + \sqrt{10}) - \ln 1 \right)$$
$$= 5.71 (3 \text{ s.f.})$$

9. $x = t^3$, $y = t^2$ When y = 4, t = 2 (t must be positive as x is positive in the first quadrant)

Volume =
$$\pi \int_{t=0}^{t=2} x^2 \frac{dy}{dt} dt$$

= $\pi \int_{0}^{2} t^6 \times 2t dt$
= $\pi \int_{0}^{2} 2t^7 dt$
= $\pi \left[\frac{1}{4}t^8\right]_{0}^{2}$
= 64π

10. When the curve meets the x-axis, $y = 0 \implies \sqrt{1-t} = 0 \implies t = 1$

When
$$x = 1$$
, $e^{-2t} = 1 \Rightarrow t = 0$
 $x = e^{-2t} \Rightarrow \frac{dx}{dt} = -2e^{-2t}$
Volume $= \int_{t=1}^{t=0} \pi y^2 \frac{dx}{dt} dt$
 $= \pi \int_1^0 (1-t) \times -2e^{-2t} dt$
 $= -2\pi \int_1^0 (1-t)e^{-2t} dt$
Using integration by parts:
Let $u = 1 - t \Rightarrow \frac{du}{dx} = -1$
 $\frac{dv}{dx} = e^{-2x} \Rightarrow v = -\frac{1}{2}e^{-2x}$
 $\int_1^0 (1-t)e^{-2t} dt = [(1-t) \times -\frac{1}{2}e^{-2t}]_1^0 - \int_{-1}^1 -1 \times -\frac{1}{2}e^{-2t} dt$
 $= [-\frac{1}{2}(1-t)e^{-2t}]_1^0 - \int_{-1}^1 \frac{1}{2}e^{-2t} dt$
 $= [-\frac{1}{2}(1-t)e^{-2t} + \frac{1}{4}e^{-2t}]_1^0$
 $= (-\frac{1}{2} + \frac{1}{4}) - (0 + \frac{1}{4}e^{-2})$
 $= -\frac{1}{4} - \frac{1}{4}e^{-2}$
Volume $= -2\pi(-\frac{1}{4} - \frac{1}{4}e^{-2})$