Edexcel Further Maths Applications of integration "integral

Section 1: Further volumes of revolution

Section test

1. The volume of the solid obtained by rotating the curve $y=\frac{1}{\sqrt{x}}$ between $x=1$ and $x=2$ through 360° about the x-axis is
(a) $\pi \ln 2-1$
(b) $\pi(\ln 2-1)$
(c) $\pi \ln 2$
(d) $\pi(\ln 2+1)$
2. The volume of the solid obtained when the graph of $y=\sqrt{\mathrm{e}^{x}-1}$ between $x=0$ and $x=1$ is rotated through 360° about the x-axis is given by
(a) $\pi(\mathrm{e}+1)$
(b) $\pi \mathrm{e}$
(c) $\pi(\mathrm{e}-1)$
(d) $\pi(\mathrm{e}-2)$
3. The curve $y=\sec x$ between $x=0$ and $x=\frac{\pi}{3}$ is rotated through 360° about the x-axis. The volume of the solid generated is
(a) $\frac{2 \pi}{\sqrt{3}}$
(b) $\frac{\pi}{2}$
(c) $2 \sqrt{3} \pi$
(d) $\sqrt{3} \pi$
4. The volume of the solid obtained by rotating the curve $y=\frac{1}{\sqrt{2 x+1}}$ between $x=0$ and $x=$ 2 through 360° about the x-axis is
(a) $\frac{1}{2} \pi(\sqrt{5}-1)$
(b) $\pi \ln 5$
(c) $\frac{1}{2} \pi \ln 5$
(d) $\pi(\sqrt{5}-1)$
5. The volume of the solid obtained when the graph of $y=\ln \left(1+x^{2}\right)$ between $y=0$ and $y=\ln 2$ is rotated through 360° about the y-axis is
(a) $\int_{0}^{1} \pi\left[\ln \left(1+x^{2}\right)\right]^{2} \mathrm{~d} x$
(b) $\pi \int_{0}^{\ln 2} \sqrt{\left(\mathrm{e}^{y}-1\right)} \mathrm{d} y$
(c) $\int_{0}^{\ln 2}\left(\mathrm{e}^{y}-1\right) \mathrm{d} y$
(d) $\pi \int_{0}^{\ln 2}\left(\mathrm{e}^{y}-1\right) \mathrm{d} y$
6. The curve $y=\cos x$ between $x=0$ and $x=\frac{\pi}{2}$ is rotated through 360° about the x-axis. The volume of the solid generated is
(a) $\frac{1}{4} \pi$
(b) $\frac{1}{4} \pi^{2}$
(c) $\frac{1}{2} \pi^{2}$
(d) $\frac{1}{4} \pi(\pi+1)$

Edexcel FM Applications of integration 1 section test solns

7. The curve $y=\frac{1}{\sqrt{x^{2}+1}}$ for $x>0$ is rotated through 360° about the x-axis. Find the volume of the solid generated.
8. The part of the curve $x^{4}\left(1+y^{2}\right)=1$ between $y=0$ and $y=3$ is rotated through 360° about the y-axis. Find the volume of the solid generated.
9. A curve has parametric equations $x=t^{3}, y=t^{2}$. The region in the first quadrant bounded by the curve and the line $y=4$ is rotated through 360° about the y-axis. Find the volume of the solid generated.
10. A curve has parametric equations $x=\mathrm{e}^{-2 t}, y=\sqrt{1-t}$. The region bounded by the curve, the x-axis and the line $x=1$ is rotated through 360° about the x-axis. The volume of the solid generated is
(a) $\frac{1}{2} \pi\left(1-\mathrm{e}^{-2}\right)$
(b) $\frac{1}{4} \pi\left(1+\mathrm{e}^{-2}\right)$
(c) $\frac{1}{2} \pi\left(1+\mathrm{e}^{-2}\right)$
(d) $\frac{1}{4} \pi\left(1-\mathrm{e}^{-2}\right)$

Solutions to section test

1. volume $=\int_{0}^{2} \pi y^{2} d x=\pi \int_{1}^{2}\left(\frac{1}{\sqrt{x}}\right)^{2} d x$

$$
\begin{aligned}
& =\pi \int_{1}^{2} \frac{1}{x} d x \\
& =\pi[\ln x]_{1}^{2} \\
& =\pi(\ln 2-\ln 1) \\
& =\pi \ln 2
\end{aligned}
$$

2. volume $=\int_{0}^{1} \pi y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{1}\left(e^{x}-1\right) d x \\
& =\pi\left[e^{x}-x\right]_{0}^{1} \\
& =\pi(e-1-1+0) \\
& =\pi(e-2)
\end{aligned}
$$

3. $v=\int_{0}^{\frac{\pi}{3}} \pi y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{\frac{\pi}{3}} \sec ^{2} x d x \\
& =\pi[\tan x]_{0}^{\frac{\pi}{2}} \\
& =\pi \tan \frac{\pi}{3} \\
& =\sqrt{3} \pi
\end{aligned}
$$

4. volume $=\int_{0}^{2} \pi y^{2} d x=\pi \int_{0}^{2}\left(\frac{1}{\sqrt{2 x+1}}\right) d x$

$$
\begin{aligned}
& =\pi \int_{0}^{2} \frac{1}{2 x+1} d x \\
& =\pi\left[\frac{1}{2} \ln (2 x+1)\right]_{0}^{2} \\
& =\frac{1}{2} \pi(\ln 5-\ln 1) \\
& =\frac{1}{2} \pi \ln 5
\end{aligned}
$$

5.

$$
\begin{aligned}
& \begin{array}{l}
y=\ln \left(1+x^{2}\right) \Rightarrow e^{y}=1+x^{2} \Rightarrow x^{2}=e^{y}-1 \\
\text { volume }
\end{array}=\int_{0}^{\ln 2} \pi x^{2} d y \\
& \qquad=\pi \int_{0}^{\ln 2}\left(e^{y}-1\right) d y
\end{aligned}
$$

Edexcel FM Applications of integration 1 section test solns
6. $v=\int_{0}^{\frac{\pi}{2}} \pi y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \\
& =\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 2 x) d x \\
& =\frac{1}{2} \pi\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{2} \pi\left(\frac{\pi}{2}+\frac{1}{2} \sin \pi-0\right) \\
& =\frac{1}{4} \pi^{2}
\end{aligned}
$$

7. $v=\int_{0}^{\infty} \pi y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{\infty} \frac{1}{x^{2}+1} d x \\
& =\pi[\arctan x]_{0}^{\infty} \\
& =\pi \times \frac{\pi}{2} \\
& =\frac{\pi^{2}}{2}=4.93 \text { (3 s.f.) }
\end{aligned}
$$

8. $v=\int_{0}^{3} \pi x^{2} d y$

$$
\begin{aligned}
& =\pi \int_{0}^{3} \frac{1}{\sqrt{1+y^{2}}} d x \\
& =\pi\left[\ln \left(y+\sqrt{y^{2}+1}\right)\right]_{0}^{3} \\
& =\pi(\ln (3+\sqrt{10})-\ln 1) \\
& =5.71 \text { (3 s.f.) }
\end{aligned}
$$

9. $x=t^{3}, y=t^{2}$

When $y=4, t=2$ (t must be positive as x is positive in the first quadrant)

$$
\begin{aligned}
\text { volume } & =\pi \int_{t=0}^{t=2} x^{2} \frac{d y}{d t} d t \\
& =\pi \int_{0}^{2} t^{6} \times 2 t d t \\
& =\pi \int_{0}^{2} 2 t^{7} d t \\
& =\pi\left[\frac{1}{4} t^{8}\right]_{0}^{2} \\
& =64 \pi
\end{aligned}
$$

Edexcel FM Applications of integration 1 section test solns

10. When the curve meets the x-axis, $y=0 \Rightarrow \sqrt{1-t}=0 \Rightarrow t=1$

When $x=1, \quad e^{-2 t}=1 \Rightarrow t=0$

$$
\begin{aligned}
x=e^{-2 t} & \Rightarrow \frac{d x}{d t}=-2 e^{-2 t} \\
\text { volume } & =\int_{t=1}^{t=0} \pi y^{2} \frac{d x}{d t} d t \\
& =\pi \int_{1}^{0}(1-t) \times-2 e^{-2 t} d t \\
& =-2 \pi \int_{1}^{0}(1-t) e^{-2 t} d t
\end{aligned}
$$

using integration by parts:
Let $u=1-t \Rightarrow \frac{d u}{d x}=-1$

$$
\begin{aligned}
& \frac{d v}{d x}=e^{-2 x} \Rightarrow v=-\frac{1}{2} e^{-2 x} \\
& \begin{aligned}
\int_{1}^{0}(1-t) e^{-2 t} d t & =\left[(1-t) \times-\frac{1}{2} e^{-2 t}\right]_{1}^{0}-\int_{-1}^{1}-1 \times-\frac{1}{2} e^{-2 t} d t \\
& =\left[-\frac{1}{2}(1-t) e^{-2 t}\right]_{1}^{0}-\int_{-1}^{1} \frac{1}{2} e^{-2 t} d t \\
& =\left[-\frac{1}{2}(1-t) e^{-2 t}+\frac{1}{4} e^{-2 t}\right]_{1}^{0} \\
& =\left(-\frac{1}{2}+\frac{1}{4}\right)-\left(0+\frac{1}{4} e^{-2}\right) \\
& =-\frac{1}{4}-\frac{1}{4} e^{-2}
\end{aligned} \\
& \begin{aligned}
\text { volume } & =-2 \pi\left(-\frac{1}{4}-\frac{1}{4} e^{-2}\right) \\
& =\frac{1}{2} \pi\left(1+e^{-2}\right)
\end{aligned}
\end{aligned}
$$

