Section 2: Mean values and general integration

Section test

1. Find the mean value of the function $y=x^{3}$ in the interval $[0,4]$.
2. Find the mean value of the function $y=\sqrt{x}$ in the interval $[1,4]$.
3. Find the mean value of the function $\mathrm{f}(x)=\cosh x$ between $x=0$ and $x=2$.
4. Find the mean value of the function $\mathrm{f}(x)=\frac{1}{\sqrt{x^{2}-1}}$ between $x=1$ and $x=1.25$.
5. Which of the following integrals give a result involving an arsinh function?
(a) $\int \frac{1}{\sqrt{2 x^{2}-3}} \mathrm{~d} x$
(b) $\int \frac{1}{\sqrt{2 x^{2}+3}} \mathrm{~d} x$
(c) $\int \frac{1}{\sqrt{3-2 x^{2}}} \mathrm{~d} x$
(d) $\int \frac{1}{\sqrt{x^{2}-2 x+4}} \mathrm{~d} x$
(e) $\int \frac{1}{\sqrt{x^{2}-2 x}} \mathrm{~d} x$
6. Which of the following integrals give a result involving an arcosh function?
(a) $\int \frac{1}{\sqrt{2 x^{2}-3}} \mathrm{~d} x$
(b) $\int \frac{1}{\sqrt{2 x^{2}+3}} \mathrm{~d} x$
(c) $\int \frac{1}{\sqrt{3-2 x^{2}}} \mathrm{~d} x$
(d) $\int \frac{1}{\sqrt{x^{2}-2 x+4}} \mathrm{~d} x$
(e) $\int \frac{1}{\sqrt{x^{2}-2 x}} \mathrm{~d} x$
7. Which of the following would be an appropriate substitution to use in order to find the integral $\int \sqrt{a^{2}+x^{2}} \mathrm{~d} x$?
(a) $x=a \sin u$
(b) $x=a \cos u$
(c) $x=a \tan u$
(d) $x=a \sinh u$
(e) $x=a \cosh u$
8. Which of the following would be an appropriate substitution to use in order to find the integral $\int \frac{1}{\left(a^{2}-x^{2}\right)^{\frac{3}{2}}} \mathrm{~d} x$?
(a) $x=a \sin u$
(b) $x=a \cos u$
(c) $x=a \tan u$
(d) $x=a \sinh u$
(e) $x=a \cosh u$

Edexcel FM Applications of integration 2 section test solns

Solutions to section test

1. Mean value $=\frac{1}{4-0} \int_{0}^{4} x^{3} d x$

$$
\begin{aligned}
& =\frac{1}{4}\left[\frac{1}{4} x^{4}\right]_{0}^{4} \\
& =\frac{1}{4} \times \frac{1}{4} \times 4^{4} \\
& =16
\end{aligned}
$$

2. Mean value $=\frac{1}{4-1} \int_{1}^{4} x^{\frac{1}{2}} d x$

$$
\begin{aligned}
& =\frac{1}{3}\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{1}^{4} \\
& =\frac{2}{9}(8-1) \\
& =\frac{14}{9}
\end{aligned}
$$

3. Mean $=\frac{1}{2} \int_{0}^{2} \cosh x d x$

$$
\begin{aligned}
& =\frac{1}{2}[\sinh x]_{0}^{2} \\
& =\frac{1}{2} \sinh 2 \\
& =\frac{e^{2}-e^{-2}}{4} \\
& =1.81 \text { (3 s.f.) }
\end{aligned}
$$

4. Mean $=\frac{1}{0.25} \int_{1}^{1.25} \frac{1}{\sqrt{x^{2}-1}} d x$

$$
\begin{aligned}
& =4\left[\ln \left(x+\sqrt{x^{2}-1}\right]_{1}^{1.25}\right. \\
& =4 \ln (1.25+0.75)-4 \ln 1 \\
& =4 \ln 2
\end{aligned}
$$

5. $\int \frac{1}{\sqrt{2 x^{2}-3}} d x$ is not - this is the form for a arcosh function $\int \frac{1}{\sqrt{2 x^{2}+3}} d x$ does give a result which is a arsinh function $\int \frac{1}{\sqrt{3-2 x^{2}}} d x$ is not - this is the form for a arcsin function $\int \frac{1}{\sqrt{x^{2}-2 x+4}} d x=\int \frac{1}{\sqrt{(x-1)^{2}+3}} d x$ so this does give a result which is a arsinh function

Edexcel FM Applications of integration 2 section test solns
$\int \frac{1}{\sqrt{x^{2}-2 x}} d x=\int \frac{1}{\sqrt{(x-1)^{2}-1}} d x$ so this is the form for a arcosh function
6. From above, the integrals $\int \frac{1}{\sqrt{2 x^{2}-3}} d x$ and $\int \frac{1}{\sqrt{x^{2}-2 x}} d x=\int \frac{1}{\sqrt{(x-1)^{2}-1}} d x$ give arcosh functions
7. $x=a \tan u$ could be used giving $\sqrt{a^{2}+a^{2} \tan ^{2} u}=\sqrt{a^{2} \sec ^{2} u}=a \sec u$
$x=a \sinh u$ could be used giving $\sqrt{a^{2}+a^{2} \sinh ^{2} u}=\sqrt{a^{2} \cosh ^{2} u}=a \cosh u$
8. $x=a \sin u$ could be used giving $\frac{1}{\left(a^{2}-a^{2} \sin ^{2} u\right)^{\frac{3}{2}}}=\frac{1}{\left(a^{2} \cos ^{2} u\right)^{\frac{3}{2}}}=\frac{1}{a^{2}} \sec ^{3} u$ $x=a \cos u$ could be used giving $\frac{1}{\left(a^{2}-a^{2} \cos ^{2} u\right)^{\frac{3}{2}}}=\frac{1}{\left(a^{2} \sin ^{2} u\right)^{\frac{3}{2}}}=\frac{1}{a^{2}} \operatorname{cosec}^{3} u$

