Edexcel Further Maths Second order DEs

Topic assessment

1. A solution is sought to the differential equation

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 2y = 2e^{-x}$$
(i) Find the general solution. [8]

You are given that when
$$x = 0$$
, $y = 0$ and $\frac{dy}{dx} = 1$.

- (ii) Find the solution subject to these conditions. [3]
- 2. (i) Find the general solution of the differential equation

$$\frac{d^2 y}{dx^2} + 3\frac{dy}{dx} + 2y = 2x - 1.$$
 [8]

(ii) Find the particular solution for which y = 0 and $\frac{dy}{dx} = 0$ when x = 0. [3]

- 3. (i) Find the general solution to the differential equation $\frac{d^2 y}{dx^2} + 9y = 18$. [8]
 - (ii) Given that y has a maximum value of 6 when $x = \frac{\pi}{2}$, find the minimum value of y.
 - (iii) Find the smallest positive value of x for which y = 0. [2]
- 4. A system of differential equations is given by

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -3x - 2y - 4 \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = x - y + 3$$

and when t = 0, x = 0 and y = 3.

- (i) Find expressions for *x* and *y* in terms of *t*. [10]
- (ii) Describe what happens to x and y as t tends to ∞ .
- 5. A particle is attached to the lower end of a spring, the upper end of which oscillates about a point O. The motion of the particle can be modelled by the equation $\ddot{x} + 25x = 0.5 \sin 5t$

where x is the displacement of the particle from its equilibrium point.

When t = 0, x = 0 and the particle is at rest.

(i) Solve this differential equation to find x in terms of t and describe briefly the motion of the particle. [10]

In order to damp the oscillations the particle is submerged in liquid and the motion of the particle can be modelled as

 $\ddot{x} + k\dot{x} + 25x = 0.5\sin 5t$

where *k* is a constant.

(ii) Explain why *k* must be positive. Give the range of values of *k* for which the system will be underdamped.

Total 60 marks

[1]

