Edexcel Further Maths Second order DEs

Topic assessment

1. A solution is sought to the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \mathrm{e}^{-x} \tag{8}
\end{equation*}
$$

(i) Find the general solution.

You are given that when $x=0, y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$.
(ii) Find the solution subject to these conditions.
2. (i) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 x-1 \tag{8}
\end{equation*}
$$

(ii) Find the particular solution for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
3. (i) Find the general solution to the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+9 y=18$.
(ii) Given that y has a maximum value of 6 when $x=\frac{\pi}{2}$, find the minimum value of y.
(iii) Find the smallest positive value of x for which $y=0$.
4. A system of differential equations is given by

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-3 x-2 y-4 \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=x-y+3
$$

and when $t=0, x=0$ and $y=3$.
(i) Find expressions for x and y in terms of t.
(ii) Describe what happens to x and y as t tends to ∞.
5. A particle is attached to the lower end of a spring, the upper end of which oscillates about a point O . The motion of the particle can be modelled by the equation

$$
\ddot{x}+25 x=0.5 \sin 5 t
$$

where x is the displacement of the particle from its equilibrium point.
When $t=0, x=0$ and the particle is at rest.
(i) Solve this differential equation to find x in terms of t and describe briefly the motion of the particle.

In order to damp the oscillations the particle is submerged in liquid and the motion of the particle can be modelled as

$$
\ddot{x}+k \dot{x}+25 x=0.5 \sin 5 t
$$

where k is a constant.
(ii) Explain why k must be positive. Give the range of values of k for which the system will be underdamped.

