Edexcel Further Maths Polar coordinates

Topic assessment

1. (i) Sketch the polar curve whose equation is

$$
r=3 \sin 2 \theta,
$$

dotting in parts of the curve corresponding to $r<0$.
Indicate clearly the order in which the various parts of the curve are traced out as θ increases from 0 to 2π.
(ii) Find the area of the loop in the first quadrant.
2. (i) Sketch the curve (a cardioid) whose equation in polar coordinates is

$$
\begin{equation*}
r=a(1+\cos \theta) \tag{5}
\end{equation*}
$$

where a is a positive constant.
(ii) Show that the cardioid meets the circle $r=a$ when $\theta= \pm 1 / 2 \pi$.

Sketch the circle $r=a$ on the same diagram as the cardioid.
(iii) Shade the region with area given by $\int_{\frac{1}{2} \pi}^{\pi} \frac{1}{2} r^{2} \mathrm{~d} \theta$ where $r=a(1+\cos \theta)$.
(iv) Find the area of the region which is both inside the cardioid and inside the circle.
3. (r, θ) are polar coordinates with origin O .
(i) Sketch the curve with equation $r=k \theta$ for $0 \leq \theta \leq 4 \pi$, where k is a positive constant. Label the points A and B on the curve corresponding to $\theta=\pi$ and $\theta=2 \pi$ respectively.
(ii) On your diagram, shade in the region bounded by the line AOB and that part of the curve $r=k \theta$ for which $\pi \leq \theta \leq 2 \pi$.
(iii) The area of the shaded region is S_{1}. Calculate S_{1}.
(iv) S_{2} is the area of a semicircle with diameter AB .

Calculate the value of $\frac{S_{1}}{S_{2}}$.

Total: 50 marks

