Edexcel Further Maths Polar coordinates

Topic assessment

1.	(i)	Sketch the polar curve whose equation is $r = 3\sin 2\theta$, dotting in parts of the curve corresponding to $r < 0$.	
		Indicate clearly the order in which the various parts of the curve are tra out as θ increases from 0 to 2π .	ced [5]
	(ii)	Find the area of the loop in the first quadrant.	[5]
2.	(i)	Sketch the curve (a <i>cardioid</i>) whose equation in polar coordinates is $r = a(1 + \cos\theta)$,	
		where <i>a</i> is a positive constant.	[5]
	(ii)	Show that the cardioid meets the circle $r = a$ when $\theta = \pm \frac{1}{2}\pi$. Sketch the circle $r = a$ on the same diagram as the cardioid.	F 43
	(iii)) Shade the region with area given by $\int_{\frac{1}{2}\pi}^{\pi} \frac{1}{2}r^2 d\theta$ where $r = a(1 + \cos\theta)$.	[4]
		Find the area of the region which is both inside the cardioid and inside circle.	[2] the
			[9]
3.	(<i>r</i> , (i)	θ) are polar coordinates with origin O. Sketch the curve with equation $r = k\theta$ for $0 \le \theta \le 4\pi$, where k is a positive constant. Label the points A and B on the curve corresponding $\theta = \pi$ and $\theta = 2\pi$ respectively.	to
	(ii)	On your diagram, shade in the region bounded by the line AOB and that part of the curve $r = k\theta$ for which $\pi \le \theta \le 2\pi$.	[5]
) The area of the shaded region is S_1 . Calculate S_1 .	[2]
		S_2 is the area of a semicircle with diameter AB.	[8]
		Calculate the value of $\frac{S_1}{S_2}$.	
		~ 2	[5]
	Total: 50 marks		

