Edexcel Further Mathematics Maclaurin series

Topic assessment

1.	(i)	For the function $f(x) = e^{3x} \cos 2x$, express $f'(x)$ in terms of $f(x)$.	[3]
	(ii)	Express $f''(x)$ in terms of $f'(x)$ and $f(x)$.	[3]

- (ii) Express f''(x) in terms of f'(x) and f(x).
- (iii) Express $f^{(3)}(x)$ in terms of f''(x), f'(x) and f(x). [3]
- (iv) Hence find the first four non-zero terms in the Maclaurin series for $f(x) = e^{3x} \cos 2x$. [4]
- 2. Use known Maclaurin series to find the first three non-zero terms in the Maclaurin series for each of the following functions.
 - $\sin x^2$ (i) [3]
 - (ii) $\cos^2 x$ [5]

(iii)
$$\ln(1+\sin x)$$
 [5]

Differentiate $\arcsin 3x$. 3. (i) [2]

(ii)	Find the first three terms in the series expansion of $\frac{1}{\sqrt{1-9x^2}}$	[5]
------	---	-----

(iii) Hence find the first three terms in the series expansion of $\arcsin 3x$. [3]

Find the first four terms in the expansion of $\ln(1+4x)$. 4. (i) [4]

- Find the first four terms in the expansion of $\ln(1-3x)$. (ii) [4]
- Hence find the first four terms in the expansion of $\ln\left(\frac{1+4x}{1-3x}\right)$ (iii) [2]
- For what values of *x* is this expansion valid? (iv) [1] By substituting x = 0.1, use your answer to (iii) to find an approximate (v)
- value for ln 2. Give your answer to an appropriate degree of accuracy. [3]

Total 50

