Edexcel Further Mathematics Maclaurin series

Topic assessment

1. (i) For the function $\mathrm{f}(x)=\mathrm{e}^{3 x} \cos 2 x$, express $\mathrm{f}^{\prime}(x)$ in terms of $\mathrm{f}(x)$.
(ii) Express $\mathrm{f}^{\prime \prime}(x)$ in terms of $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}(x)$.
(iii) Express $\mathrm{f}^{(3)}(x)$ in terms of $\mathrm{f}^{\prime \prime}(x), \mathrm{f}^{\prime}(x)$ and $\mathrm{f}(x)$.
(iv) Hence find the first four non-zero terms in the Maclaurin series for $\mathrm{f}(x)=\mathrm{e}^{3 x} \cos 2 x$.
2. Use known Maclaurin series to find the first three non-zero terms in the Maclaurin series for each of the following functions.
(i) $\sin x^{2}$
(ii) $\cos ^{2} x$
(iii) $\ln (1+\sin x)$
3. (i) Differentiate $\arcsin 3 x$.
(ii) Find the first three terms in the series expansion of $\frac{1}{\sqrt{1-9 x^{2}}}$
(iii) Hence find the first three terms in the series expansion of $\arcsin 3 x$.
4. (i) Find the first four terms in the expansion of $\ln (1+4 x)$.
(ii) Find the first four terms in the expansion of $\ln (1-3 x)$.
(iii) Hence find the first four terms in the expansion of $\ln \left(\frac{1+4 x}{1-3 x}\right)$
(iv) For what values of x is this expansion valid?
(v) By substituting $x=0.1$, use your answer to (iii) to find an approximate value for $\ln 2$. Give your answer to an appropriate degree of accuracy.

Total 50

