Edexcel Further Mathematics Further calculus

\int "integral

Topic assessment

1. If possible find the values of
(i) $\int_{2}^{\infty} x^{-3} \mathrm{~d} x$
(ii) $\int_{-3}^{\infty} x^{-4} \mathrm{~d} x$
(iii) $\int_{-1}^{8} x^{-\frac{1}{3}} \mathrm{~d} x$
(iv) $\int_{0}^{49} \frac{1}{\sqrt{x}} \mathrm{~d} x$
2. Use the substitution $x \sqrt{3}=2 \tan \theta$ to show that $\int_{0}^{2} \frac{1}{\left(3 x^{2}+4\right)^{\frac{3}{2}}} \mathrm{~d} x=\frac{1}{8}$.
3. (i) Find the exact value of $\int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} \mathrm{~d} x$.
(ii) Solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+4 y^{2}$, given that $y=0$ when $x=4$.

Express y in terms of x.
4. (i) Differentiate $\arcsin \left(\frac{x}{2}\right)$ with respect to x (where $0<x<2$), simplifying your answer as much as possible.
(ii) Using integration by parts, show that $\int_{0}^{\sqrt{3}} \arcsin \left(\frac{x}{2}\right) \mathrm{d} x=\frac{\pi}{\sqrt{3}}-1$.
5. (i) Express $\frac{2 x}{(1+x)\left(1+x^{2}\right)}$ in partial fractions.
(ii) Hence evaluate $\int_{0}^{1} \frac{2 x}{(1+x)\left(1+x^{2}\right)} \mathrm{d} x$, expressing your answer in an exact form.

