Edexcel Further Maths First order DEs

Topic assessment

1. (i) Find the general solution of the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y-\frac{1}{y} \quad(-1<y<1) \tag{5}
\end{equation*}
$$

(ii) Sketch the family of solution curves represented by the general solution.
(iii) Find the particular solution for which $y=0$ when $x=1$, and indicate this particular solution on your sketch.
2. (i) Solve the differential equation

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{4 x^{3} y}{1-x^{2}}=1 \tag{-1<x<1}
\end{equation*}
$$

giving y in terms of x.
(ii) Find the particular solution in the case where $y=1$ when $x=0$.
3. The motion of a parachutist free-falling from rest from a stationary helicopter is given by the differential equation

$$
\begin{equation*}
v \frac{\mathrm{~d} v}{\mathrm{~d} x}=9.8-0.002 v^{2} \tag{6}
\end{equation*}
$$

where $x \mathrm{~m}$ is her distance below the helicopter and $v \mathrm{~ms}^{-1}$ is her velocity.
Solve the differential equation to show that $v=70\left(1-\mathrm{e}^{-0.004 x}\right)^{1 / 2}$.
4. Two differential equations are being studied for $x>0$.

$$
\begin{align*}
& \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\mathrm{e}^{x} \tag{1}\\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \mathrm{e}^{x}=\mathrm{e}^{x} \tag{2}
\end{align*}
$$

(i) Use the integrating factor method to find the general solution of equation (1), giving y in terms of x.
(ii) Given that $y=1$ when $x=1$, find the particular solution.
(iii) Use a method other than the integrating factor method to find the general solution of equation (2), giving y in terms of x.

Total: 40 marks

