Edexcel Further Mathematics Complex numbers

Topic Assessment

1. (i) Express $\mathrm{e}^{-\frac{1}{2} \theta}-\mathrm{e}^{\frac{1}{2} \theta}$ in trigonometric form, and show that $\left(1-\mathrm{e}^{\mathrm{i} \theta}\right)^{2}=-4 \mathrm{e}^{\mathrm{i} \theta} \sin ^{2} \frac{1}{2} \theta$.
(ii) For a positive integer n, series C and S are given by

$$
\begin{aligned}
& C=1-\binom{2 n}{1} \cos \theta+\binom{2 n}{2} \cos 2 \theta-\binom{2 n}{3} \cos 3 \theta+\ldots+\cos 2 n \theta \\
& S=-\binom{2 n}{1} \sin \theta+\binom{2 n}{2} \sin 2 \theta-\binom{2 n}{3} \sin 3 \theta+\ldots+\sin 2 n \theta
\end{aligned}
$$

Show that $C=(-4)^{n} \cos n \theta \sin ^{2 n}\left(\frac{1}{2} \theta\right)$, and find a similar expression for S.
(iii) Given that $w=\mathrm{e}^{\mathrm{i} \phi}$ is a cube root of 1 , state the three possible values of ϕ with $-\pi<\phi<\pi$, and find the possible values of $(1-w)^{6}$.
2. (a) By considering $(\cos \theta+\mathrm{i} \sin \theta)^{4}$, express $\tan 4 \theta$ in terms of $\tan \theta$.
(b) (i) By considering $\left(z-\frac{1}{z}\right)^{2}\left(z+\frac{1}{z}\right)^{4}$, where $z=\cos \theta+\mathrm{i} \sin \theta$, show that

$$
\begin{equation*}
\sin ^{2} \theta \cos ^{4} \theta=\frac{1}{16}+\frac{1}{32} \cos 2 \theta-\frac{1}{16} \cos 4 \theta-\frac{1}{32} \cos 6 \theta . \tag{8}
\end{equation*}
$$

(ii) Use the substitution $x=\tan \theta$ to show that

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{4}} \mathrm{~d} x=\frac{\pi}{64}+\frac{1}{48} . \tag{7}
\end{equation*}
$$

3. (a) By considering $(\cos \theta+\mathrm{i} \sin \theta)^{5}$, show that

$$
\begin{equation*}
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \tag{5}
\end{equation*}
$$

(b) (i) Find the modulus and argument of $-8+8 \sqrt{3}$ i, and hence find the fourth roots of $-8+8 \sqrt{3} \mathrm{i}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$ with $r>0$ and $-\pi<\theta \leq \pi$.

The points representing these fourth roots on an Argand diagram are the vertices of a square. These points are labelled A, B, C, D starting with A in the first quadrant and going anticlockwise.
(ii) Draw an Argand diagram showing the square ABCD.

Find the length of a side of this square.
The midpoints of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ represent complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$, which are the fourth roots of a complex number w.
(iii) By first finding the modulus and argument of z_{1}, or otherwise, find w, giving your answer in the form $a+b$ i.

