Topic assessment

1. A uniform rod AB of length 8 m and weight 180 N is held in horizontal equilibrium by two vertical wires. One wire is 1 m from A and the other 2 m from B.

(i) Draw a diagram showing all the forces acting on the rod.
(ii) Calculate the tensions in the wires.
2. A uniform ladder of length 8 m and weight 180 N rests against a smooth, vertical wall and stands on a rough, horizontal surface. A woman of weight 720 N stands on the ladder so that her weight acts at a distance $x \mathrm{~m}$ from its lower end, as shown in the diagram.

The system is in equilibrium with the ladder at 20° to the vertical.
(i) Show that the frictional force between the ladder and the horizontal surface is $F \mathrm{~N}$, where

$$
\begin{equation*}
F=90(1+x) \tan 20^{\circ} . \tag{5}
\end{equation*}
$$

(ii) Deduce that F increases as x increases and hence find the values of the coefficient of friction between the ladder and the surface for which the woman can stand anywhere on the ladder without it slipping.

Edexcel A level Maths Moments Assessment solutions

3. A uniform, horizontal, rigid shelf CD has a weight of 40 N and length 1.6 m . It is resting on two thin brackets A and B which are 0.4 m and 0.2 m respectively from C and D , as shown in the diagram below.

(i) Calculate the reaction forces of the brackets on the shelf.

An object is placed on the shelf so that its weight, $W \mathrm{~N}$, acts on the shelf at a distance $x \mathrm{~m}$ from C.
(ii) Show that the vertical reaction force on the shelf at A is $(24-W(x-1.4)) \mathrm{N}$. Find a similar expression for the vertical reaction force on the shelf at B .
(iii) For what values of x will the shelf not tip up if $W=200$?

The object is removed and the bracket at B is removed for repair. The empty shelf is temporarily held horizontally in equilibrium by a wire attached at D . The wire is inclined at 30° to the vertical and is in the vertical plane containing CD , as shown in the diagram below.

(iv) Calculate the tension in the wire.
(v) Calculate the direction of the supporting force now given to the shelf by bracket A .
4. A packing case in the shape of a cuboid is on a rough plane inclined at an angle α to the horizontal. The packing case is being pushed by a horizontal force of $P \mathrm{~N}$ applied perpendicular to and in the centre of an edge of the case, as shown in Figure 1 below. Figure 2 below is a side elevation showing the dimensions of the packing case and the position of G, the centre of mass of the packing case and its contents.

Edexcel A level Maths Moments Assessment solutions

Figure 1

Figure 2

The weight of the packing case and contents is $840 \mathrm{~N}, \sin \alpha=\frac{7}{25}, \cos \alpha=\frac{24}{25}$ and the coefficient of friction between the packing case and the plane is μ.
(i) Initially $P=0$ and the packing case is in equilibrium. Show that $\mu \geq \frac{7}{24}$.
(ii) Subsequently $P>0$. Write down the components of P parallel to and perpendicular to the plane. Show that the moment of the pushing force about the edge AB, shown in Figure 1, is $\frac{27}{25} P$ Nm clockwise.
(iii) The value of P is such that the packing case is in equilibrium but about to turn about the edge AB.
Draw a diagram showing all of the forces acting on the packing case.
Show that $P=964$, correct to three significant figures.

Total: $\mathbf{4 5}$ marks

