AS MATHS - STATISTICS REVISION NOTES

PLANNING AND DATA COLLECTION

- PROBLEM SPECIFICATION AND ANALYSIS

What is the purpose of the investigation?
What data is needed?
How will the data be used?

- DATA COLLECTION

How will the data be collected?
How will bias be avoided?
What sample size is needed?

- PROCESSING AND REPRESENTING

How will the data be 'cleaned'?
Which measures will be calculated?
How will the data be represented?

- INTERPRETING AND DISCUSSING

1 DATA COLLECTION

Types of data Categorial/Qualitative data - descriptive Numerical/ Quantitative data

Sampling Techniques

Simple random Sampling - each member of the population has an equal chance of being selected for the sample
Systematic - choosing from a sampling frame - if the data is numbered 1, 2, 3, 4....randomly select the starting point and then select every nth item in the list

Stratified - A stratified sample is one that ensures that subgroups (strata) of a given population are each adequately represented within the whole sample population of a research study.
Sample size from each subgroup $=\frac{\text { size of whole sample }}{\text { size of whole population }} \times$ population of the subgroup
Quota Sampling - sample selected based on specific criteria e.g age group
Convenience / opportunity sampling - e.g the first 5 people who enter a Leisure Centre or teachers in single primary school surveyed to find information about working in primary education across the UK

Self Selecting Sample - people volunteer to take part in a survey either remotely (internet) or in person

2 PROCESSING AND REPRESENTATION

Categorial/Qualitative data Pie Charts
Bar charts (with spaces between the bars)
Compound/Multiple Bar charts
Dot charts
Pictograms

Modal Class - used as a summary measure

Numerical/ Quantitative data

Represented using - Frequency diagrams Histograms
Cumulative Frequency diagrams
Box and Whisker Plots

Measures of central tendency - Mode (can have more than one mode)

- Median - middle value of ordered data
- Mean $\frac{\sum x}{n}$ or $\frac{\Sigma f x}{\Sigma f}$

If the mean is calculated from grouped data it will be an estimated mean

Measures of Spread

- Range (largest - smallest value)
- Inter Quartile Range : Upper Quartile - Lower Quartile (not influenced by extreme values)
- Standard Deviation (includes all the sample)

Finding the quartiles (sample size $=\mathbf{n}$)

n is odd Data : 2, 4, 5, 7, 8, 9, 9

2	4	5	7	8	9	9	
			Media				
Lower Quartile : middle value of data less than the median				Upper Quartile : middle value of data greater than the median			

n is even Data: $2,4,5,5,7,8,9,10$

STANDARD DEVIATION
Standard deviation $s=\sqrt{\frac{s_{x x}}{n-1}}$ where $S_{x x}=\sum(x-\bar{x})^{2} \quad$ or $S_{x x}=\sum x^{2}-n \bar{x}^{2}$

$$
\text { or } S_{x x}=\sum f x^{2}-n \bar{x}^{2}
$$

Variance $=\frac{s_{x x}}{n-1}$

BIVARIATE DATA - investigating the 'association/ correlation' between 2 variables

- The explanatory/control/independent variable is usually plotted on the horizonal axis
- A numerical measure of correlation can be calculated (Spearman's Rank, Product Moment correlation coefficient) $-1<r<1$
-1 perfect negative correlation
0 no correlation
1 perfect positive correlation.
- Take care when interpreting the correlation coefficient (look at the scatter graph)

4 'CLEANING THE DATA' removing 'Outliers or Anomaly's'

Remove values which are $1.5 \times$ Inter Quartile range above or below the U/L Quartile
Remove values which are $\mathbf{2 \times S}$ Standard Deviation above or below the mean.

PROBABILITY

- Outcome : an event that can happen in an experiment
- Sample Space : list of all the possible outcomes for an experiment

Notation

$A \cap B \quad \mathrm{~A}$ and B both happen

For independent events $\mathrm{P}(A \cap B)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
$A \cup B \quad \mathrm{~A}$ or B or both happen

$$
\mathrm{P}(A \cup B)=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(A \cap B)
$$

A^{\prime}
 A does not happen

$$
\mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(\mathrm{~A})
$$

Mutually Exclusive events - two or more events which cannot happen at the same time

$$
\begin{aligned}
& \mathrm{P}(A \cap B)=0 \\
& \mathrm{P}(A \cup B)=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
\end{aligned}
$$

	Male	Female	TOTAL
Junior	15	20	35
Senior	32	33	65
TOTAL	47	53	100

Find the probability of
a) picking a female $=0.53$
b) pickling a junior male $=0.15$
c) not picking a junior male $=1-0.15=0.85$
d) picking a junior and a senior when 2 members are selected at random $\frac{47}{100} \times \frac{53}{99} \times 2=0.503$

On his way to work Josh goes through 2 sets of traffic lights. The probability that he has to stop at the $1^{\text {st }}$ set is 0.7 and the probability for the $2^{\text {nd }}$ set is 0.6 (assume independence)

Find the probability that he has to stop at only one of the traffic lights.

Stop and Not Stop or Not Stop and Stop
0.7×0.4
$+$
0.3×0.6
$=0.46$

6 PROBABILITY DISTRIBUTIONS

A probability distribution shows the probabilities of the possible outcomes $\sum P(X=x)=1$ It can be used to calculate the EXPECTATION (mean) of the distribution $\mathrm{E}(\mathrm{X})=\sum x \times P(X=x)$

x	0	1	2		
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0.5	3 y	2 y		Calculate the value of $\mathrm{y} \sum P(X=x)=1$
:---					
$0.5+3 \mathrm{y}+2 \mathrm{y}=15 \mathrm{y}=0.5 \mathrm{y}=0.1$					

7 BINOMIAL DISTRIBUTION B(n,p)

- 2 possible outcomes probability of success $=p$

Probability of failure $=(1-p)$

- fixed number of trials n
- The trials are independent
- $E(x)=n p$

P (getting r successes out of n trials $)={ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times \boldsymbol{p}^{r} \times(1-p)^{n-r}$

Research has shown that approximately 10% of the population are left handed. A group of 8 students are selected at random.

What is the probability that less than 2 of them are left handed?
X : number of left handed students
$p=0.1 \quad 1-p=0.9 \quad n=8$
Less than $2: P(0)+P(1)$
$P(0)=0.9^{8}$
$\mathrm{P}(1)={ }_{8} \mathrm{C}_{1} \times 0.1 \times 0.9^{7}$
$P(x<2)=0.813$
(this can be found using tables or using a calculator function)

USING CUMULATIVE TABLES

- Check if you can use your calculator for this
- Remember the tables give you less than or equal to the lookup value
- List the possible outcomes and identify the ones you need to include

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}<5) \quad \begin{array}{llllllllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} \text { Look up } \mathrm{x} \leq 4 \\
& \begin{array}{rllll|lllllllll}
\\
P & (X \geq 4) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 1 \text { - Look up } x \leq 3
\end{array}
\end{aligned}
$$

8 HYPOTHESIS TESTING - for binomial

- Set up the hypothesis

$$
\begin{array}{lll}
\mathrm{H}_{\mathrm{o}}: \mathrm{p}=\mathrm{a} & \mathrm{H}_{1}: \mathrm{p}<\mathrm{a} & \text { one sided test } \\
\mathrm{H}_{1}: \mathrm{p}=\mathrm{a} & \text { two sided test } \\
\mathrm{H}_{1}: \mathrm{p}>\mathrm{a} & \text { one sided test }
\end{array}
$$

- State the significance level (as a percentage) - the lower the value the more stringent the test.
- State the distribution/model used in the test Binomial (n,p)
- Calculate the probability of the observed results occurring using the assumed model
- Compare the calculated probability to the significance level - Accept or reject H_{\circ}
- Write a conclusion (in context)

Reject H_{o}
"There is sufficient evidence to suggest that \qquad is underestimation/overestimating. \qquad ."

Accept H_{o}
"There is insufficient evidence to suggest that \qquad increase/decrease therefore conclude that $p=a . "$

The probability that patients have to wait more than 10 minutes at a GP surgery is 0.3 . One of the doctors claims that there is a decrease in the number of patients having to wait more than 10 minutes. She records the waiting times for the next 20 patients and 3 wait more than 10 minutes. Is there evidence at the 5% level to support the doctors claim?
$\mathrm{H}_{\mathrm{o}}: \mathrm{p}=0.3$
$\mathrm{H}_{1}: p<0.3$
5\% Significance level
$X=$ number of patients waiting more than 20 minutes
X Binomial $(20,0.3)$
Using tables $\mathrm{P}(\mathrm{X} \leq 3)=0.107 \quad(10.7 \%)$
10.7\% > 5\%

There is insufficient evidence to suggest that the waiting times have reduced therefore accept Ho and conclude that $p=0.3$

CRITICAL VALUES AND REGIONS

For the above example
Binomial (20, 0.3) 5\% Significance Level

$$
\begin{array}{lll}
P(X \leq 0)=0.000798 & (0.01 \%) & \\
P(X \leq 1)=0.00764 & (0.08 \%) & \\
P(X \leq 2)=0.0355 & (3.55 \%) & <5 \% \\
\hline P(X \leq 3)=0.107 & (10.7 \%) & >5 \%
\end{array}
$$

Critical Values: 0, 1, and 2
Critical Region: $\mathrm{X} \leq 2$

A sweet manufacturer packs sweets with 70% fruit and the rest mint flavoured. They want to test if there has been a change in the ratio of fruit to mint flavours at the 10% significance level. To do this they take a sample of 20 sweets. What are the critical regions?
$X=$ number of fruit sweets Binomial $(40,0.7)$
$H_{0}: p=0.7$
$\mathrm{H}_{1}: p \neq 0.7$
10\% Significance level ($\mathbf{2}$ tailed - 5\% at each tail)

Lower tail $P(X \leq 10)=0.0480 \quad 4.8 \% \quad$ Critical Region $X \leq 10 \quad$ (Critical Value $=10$)
$P(X \leq 11)=0.113 \quad 11.3 \%$
Upper tail $P(X \geq 17)=0.107 \quad 10.7 \%$
$P(X \geq 18)=0.035 \quad 3.5 \% \quad$ Critical Region $\quad X \geq 18 \quad$ (Critical value $=18$)
Critical Regions Critical Region $X \leq 10$ or $X \geq 18$

