AS MATHS - MECHANICS REVISION NOTES

1 KINEMATICS

- **Distance** a scalar quantity with no direction = 160 m
- **Displacement** a vector quantity measured from the starting position
 - = 40 m (East of starting point)
- Position a vector quantity distance from a fixed origin

AVERAGE SPEED =
$$\frac{Total \ Distance}{Total \ Time}$$
 AVERAGE VELOCITY = $\frac{Displacement}{Time \ taken}$

USING GRAPHS

Position- time graph

Velocity – time graph

Start_

East

Finish <

100 m

60 m

VELOCITY TIME GRAPH

Gradient = acceleration

www.mathsbox.org.uk

EQUATIONS FOR CONSTANT ACCELERATION

s: displacement (m) u : initia	ll velocity (ms ⁻¹) v : fina	al velocity (ms ⁻¹)	a : acceleration (ms ⁻²)
t = time (s) v = u + at	V	$u^{2} = u^{2} + 2as$	
$s = \frac{1}{2}(u + v)t$	$s = ut + \frac{1}{2}at^2$		s = vt - ½at ²
 Acceleration due to gravity is 9.8 ms⁻² (unless given in the question) Negative Acceleration – retardation/deceleration 			
A car starts from rest and rea	ches a speed of		

15 ms⁻¹ after travelling 25m with constant acceleration. Assuming the acceleration remains constant, how much further will the car travel the next 4 seconds?

```
u = 0 ms<sup>-1</sup>

v = 15 ms<sup>-1</sup>

s = 25 m

v^2 = u^2 + 2as \quad 15^2 = 2a \times 25

a = 4.5 ms^{-2}

u = 15 ms<sup>-1</sup>

t = 4

a = 4.5 \qquad s = ut + \frac{1}{2} at^2

s = 15 \times 4 + \frac{1}{2} \times 4.5 \times 16

= 96 m
```

A ball is thrown vertically upwards with a speed of 12 ms⁻¹ from a height of 1.5 m. Calculate the maximum height reached by the ball.

u = 12 ms⁻¹ a = -9.8 ms⁻² At maximum height v = 0 $v^2 = u^2 + 2as$ 0 = 144 - 2×9.8×s s = 7.35 m Maximum height = 1.5 + 7.35 = 8.85 m

2 FORCES and ASSUMPTIONS

KEY FORCES

- W : weight (mg = mass × 9.8)
- R : reaction (normal reaction at right angles to the point of contact)
- F : friction (acts in a direction opposite to that in which the object is moving or is on the point of moving)

T : Tension

ASSUMPTIONS

- Motion is in a straight line
- Air Resistance can be ignored
- Objects are modelled as masses concentrated at a single point no rotation
- Strings and rods are inextensible (no stretch) and are 'light' mass can be disregarded
- Pulleys are smooth no friction

www.mathsbox.org.uk

3 NEWTONS LAWS

1st LAW : Every object remains at rest or moves with contact velocity unless an external force is applied

2nd LAW : A force acting on an object is equal to the acceleration of that body times its mass.F = ma

3rd LAW : If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A.

Forces $F_1 = 2i + j$, $F_2 = -3i + 4j$ and $F_3 = 4i - 6j$ act on a particle with mass 10 kg. Find the magnitude of acceleration of the particle

Resultant force = $F_1 + F_2 + F_3 = (2i + j) + (-3i + 4j) + (4i - 6j)$ = 3i - jF = ma 3i - j = 10a a = 0.3i -0.1j |a| = $\sqrt{0.3^2 + (-0.1)^2}$ a = 0.316 ms⁻²

Remember

- Area under a velocity time graph = displacement
- Gradient at a point on position/time graph = velocity
- Gradient at a point on velocity/time graph = acceleration

The acceleration of a particle (in ms^{-2}) at time t seconds is given by a = 12 - 2t. The particle has an initial velocity of 3 ms^{-1} when it starts at the origin.

a) Find the velocity of the particle after t seconds $v = \int 12 - 2t \, dt$ $v = 12t - t^2 + c$ t = 0 v = 3 c = 3 $v = 12t - t^2 + 3$ b) Find the position of the particle after t seconds $r = \int 12t - t^{2} + 3 dt$ $= 6t^{2} - \frac{t^{3}}{3} + 3t + c$ $r = 0 \quad t = 0 \qquad r = 6t^{2} - \frac{t^{3}}{3} + 3t$

A train moves between 2 stations, stopping at both of them It's speed at t seconds is modelled by $V = \frac{1}{5000} t(1200 - t)$ (ms⁻¹) Find the distance between the 2 stations At the stations v = 0 $\frac{1}{5000} t(1200 - t) = 0$ t = 0 t = 1200Distance $= \int_0^{1200} \frac{1}{5000} t(1200 - t) dt = \frac{1}{5000} [600t^2 - \frac{t^3}{3} + c]$ = 57600 m= 57.6 km