## KINEMATICS

- Distance - a scalar quantity with no direction $=160 \mathrm{~m}$
- Displacement - a vector quantity - measured from the starting position

$=40 \mathrm{~m}$ (East of starting point)
- Position - a vector quantity - distance from a fixed origin

AVERAGE SPEED $=\frac{\text { Total Distance }}{\text { Total Time }}$
AVERAGE VELOCITY $=\frac{\text { Displacement }}{\text { Time taken }}$

## USING GRAPHS

## Position- time graph



Velocity - time graph


## VELOCITY TIME GRAPH

Gradient = acceleration


## EQUATIONS FOR CONSTANT ACCELERATION

```
s: displacement (m) u : initial velocity (ms )
```

$\mathrm{t}=\mathrm{time}(\mathrm{s})$

$$
v=u+a t \quad v^{2}=u^{2}+2 a s
$$

$$
s=1 / 2(u+v) t \quad s=u t+1 / 2 a t^{2} \quad s=v t-1 / 2 a t^{2}
$$

- Acceleration due to gravity is $9.8 \mathbf{~ m s}^{-2}$ (unless given in the question)
- Negative Acceleration - retardation/deceleration

A car starts from rest and reaches a speed of $15 \mathrm{~ms}^{-1}$ after travelling 25 m with constant acceleration. Assuming the acceleration remains constant, how much further will the car travel the next 4 seconds?
$\mathrm{u}=0 \mathrm{~ms}^{-1}$
$v=15 \mathrm{~ms}^{-1}$
$\mathrm{s}=25 \mathrm{~m}$

$$
\begin{aligned}
v^{2}=u^{2}+2 a s \quad 15^{2} & =2 \mathrm{a} \times 25 \\
a & =4.5 \mathrm{~ms}^{-2}
\end{aligned}
$$

$\mathrm{u}=15 \mathrm{~ms}^{-1}$
$t=4$
$a=4.5$

$$
\begin{aligned}
s & =u t+1 / 2 \text { at }^{2} \\
s & =15 \times 4+1 / 2 \times 4.5 \times 16 \\
& =96 \mathrm{~m}
\end{aligned}
$$

A ball is thrown vertically upwards with a speed of $12 \mathrm{~ms}^{-1}$ from a height of 1.5 m . Calculate the maximum height reached by the ball.
$\mathrm{u}=12 \mathrm{~ms}^{-1}$
$\mathrm{a}=-9.8 \mathrm{~ms}^{-2}$
At maximum height $v=0$

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
& 0=144-2 \times 9.8 \times s \\
& s=7.35 \mathrm{~m}
\end{aligned}
$$

Maximum height $=1.5+7.35$

$$
=8.85 \mathrm{~m}
$$

## FORCES and ASSUMPTIONS

## KEY FORCES

W : weight ( $\mathrm{mg}=$ mass $\times 9.8$ )
$R$ : reaction (normal reaction - at right angles to the point of contact)
$F$ : friction (acts in a direction opposite to that in which the object is moving or is on the point of moving)
T : Tension

## ASSUMPTIONS

- Motion is in a straight line
- Air Resistance can be ignored
- Objects are modelled as masses concentrated at a single point - no rotation
- Strings and rods are inextensible (no stretch) and are 'light' - mass can be disregarded
- Pulleys are smooth - no friction
$\mathbf{1}^{\text {st }}$ LAW : Every object remains at rest or moves with contact velocity unless an external force is applied

The system is in EQUILIBRIUM


$$
\begin{aligned}
& \mathrm{T}=\mathrm{F} \\
& \mathrm{R}=\mathrm{W}
\end{aligned}
$$

$\mathbf{2}^{\text {nd }}$ LAW : A force acting on an object is equal to the acceleration of that body times its mass.

$$
F=m a
$$

$3^{\text {rd }}$ LAW : If an object A exerts a force on object $B$, then object $B$ must exert a force of equal magnitude and opposite direction back on object $A$.

Calculate the acceleration of the object
Resultant force $=12000-6000$
$=6000 \mathrm{~N}$
$6000=8000 a \quad a=0.75 \mathrm{~ms}^{-2}$


A man of mass 80 kg stands in a lift
Calculate the normal reaction of the lift floor on the man if
a) The lift is moving downwards with constant velocity

Constant velocity so $\mathrm{R}=\mathrm{W}$

$$
\begin{aligned}
R & =80 \mathrm{~g} \mathrm{~N} \\
& =784 \mathrm{~N}
\end{aligned}
$$

b) The lift is moving upwards with acceleration of $2 \mathrm{~ms}^{-2}$

Upwards movement so $\mathrm{R}>\mathrm{W} \quad \mathrm{R}-80 \mathrm{~g}=80 \times 2$

$$
\mathrm{R}=944 \mathrm{~N}
$$



Two masses are connected by a light string passing over a smooth pulley as shown below. Calculate the acceleration of the 4 kg block when released from rest.

5 kg Block: $5 \mathrm{~g}-\mathrm{T}=5 \mathrm{a}$
4kg Block: $T-2=4 a$

Solving simultaneously $5 \mathrm{~g}-2=9$ a

$$
\mathrm{a}=5.22 \mathrm{~ms}^{-2}
$$



Forces $F_{1}=2 i+j, F_{2}=-3 i+4 j$ and $F_{3}=4 i-6 j$ act on a particle with mass 10 kg . Find the magnitude of acceleration of the particle

Resultant force $=F_{1}+F_{2}+F_{3}=(2 i+j)+(-3 i+4 j)+(4 i-6 j)$
$=3 i-j$
$\mathrm{F}=\mathrm{ma}$
$3 i-j=10 a \quad a=0.3 i-0.1 j \quad|a|=\sqrt{0.3^{2}+(-0.1)^{2}} \quad a=0.316 \mathrm{~ms}^{-2}$

$$
r=\int v d t
$$

$$
\mathrm{v}=\frac{d r}{d t}
$$

$$
\mathrm{a}=\frac{d v}{d t} \quad\left(\frac{d^{2} r}{d t^{2}}\right)
$$



$$
v=\int a d t
$$

$$
a=f(t)
$$

## Remember

- Area under a velocity time graph = displacement
- Gradient at a point on position/time graph = velocity
- Gradient at a point on velocity/time graph = acceleration

The acceleration of a particle (in $\mathrm{ms}^{-2}$ ) at time t seconds is given by $\mathrm{a}=12-2 \mathrm{t}$.
The particle has an initial velocity of $3 \mathrm{~ms}^{-1}$ when it starts at the origin.
a) Find the velocity of the particle after $t$ seconds

$$
\begin{aligned}
v & =\int 12-2 t d t \\
v & =12 t-t^{2}+c \quad t=0 \quad v=3 \quad c=3 \\
v & =12 t-t^{2}+3
\end{aligned}
$$

