Edexcel Further Maths Applications of integration integral

Section 1: Further volumes of revolution

Exercise level 2

1. Find the volume of revolution produced when the curve $y=\mathrm{e}^{x}$ between $x=0$ and $x=1$ is rotated through 360° about the x-axis. Give your answer exactly in terms of π and e.
2. The section of the curve $y=\ln (1+x)$ between $x=0$ and $x=1$ is rotated through 360° about the y-axis. Show that the volume of revolution V created is given by $\pi \int_{0}^{\ln 2}\left(\mathrm{e}^{2 y}-2 \mathrm{e}^{y}+1\right) \mathrm{d} y$.
Show that $V=\pi\left(\ln 2-\frac{1}{2}\right)$.
3. A curve is defined parametrically by the equations $x=t+t^{2}, y=t-t^{2}$.

The region enclosed by the curve and the x-axis is rotated through 360° about the x-axis. Find the volume of the solid generated.
4. (i) Sketch the curve $y=4 \sinh x+3 \cosh x$.
(ii) Write $(4 \sinh x+3 \cosh x)^{2}$ in terms of $\sinh 2 x$ and $\cosh 2 x$.
(iii)Find the volume of revolution formed by rotating the area enclosed by the axes and the curve in (i), through 360° about the x-axis.

