Edexcel Further Maths Applications of integration

Section 1: Further volumes of revolution

Exercise level 2

- 1. Find the volume of revolution produced when the curve $y = e^x$ between x = 0 and x = 1 is rotated through 360° about the *x*-axis. Give your answer exactly in terms of π and e.
- 2. The section of the curve $y = \ln(1 + x)$ between x = 0 and x = 1 is rotated through 360° about the *y*-axis. Show that the volume of revolution *V* created is given by

 $\pi \int_0^{\ln 2} (e^{2y} - 2e^y + 1) \, dy \, .$ Show that $V = \pi (\ln 2 - \frac{1}{2}) \, .$

- 3. A curve is defined parametrically by the equations $x = t + t^2$, $y = t t^2$. The region enclosed by the curve and the *x*-axis is rotated through 360° about the *x*-axis. Find the volume of the solid generated.
- 4. (i) Sketch the curve $y = 4 \sinh x + 3 \cosh x$.
 - (ii) Write $(4\sinh x + 3\cosh x)^2$ in terms of $\sinh 2x$ and $\cosh 2x$.
 - (iii)Find the volume of revolution formed by rotating the area enclosed by the axes and the curve in (i), through 360° about the *x*-axis.

