Edexcel AS Further Maths Further calculus

Topic assessment

- 1. Find the volume of the solid generated when the region bounded by the curve $y = 3x x^2$, the *x* axis and the lines x = 1 and x = 2, is rotated through 360° about the *x* axis. [5]
- 2. Find the volume formed by rotating completely about the *x* axis the region bounded by the curve $y = x^3 2x^2$ and the *x* axis. [5]
- 3. The region formed by $y = \sqrt{x}$, y = 2 and the y axis is rotated through 360° about the y axis. Find the volume generated. [5]
- 4. A curve has equation $y = \frac{1}{(1+x)^3}$.

(i) Sketch the curve for x > 0 and shade the region enclosed by the coordinate axes and the line x = 1. [3] (ii) The shaded region is rotated through 360° about the y-axis. Find the volume

of the solid generated.

[7]

Total 25 marks

Edexcel AS FM Further calculus Assessment solns

Solutions to topic assessment

1. Volume
$$= \int_{1}^{2} \pi y^{2} dx$$
$$= \pi \int_{1}^{2} (3x - x^{2})^{2} dx$$
$$= \pi \int_{1}^{2} (9x^{2} - 6x^{3} + x^{4}) dx$$
$$= \pi \left[3x^{3} - \frac{3}{2}x^{4} + \frac{1}{5}x^{5} \right]_{1}^{2}$$
$$= \pi \left(24 - 24 + \frac{32}{5} - (3 - \frac{3}{2} + \frac{1}{5}) \right)$$
$$= \frac{47}{10} \pi$$

[5]

2.
$$y = x^{3} - 2x^{2}$$

When $y = 0$, $x^{2}(x-2) = 0$
 $x = 0$ or $x = 2$
Volume $= \int_{0}^{2} \pi y^{2} dx$
 $= \pi \int_{0}^{2} (x^{3} - 2x^{2})^{2} dx$
 $= \pi \int_{0}^{2} (x^{e} - 4x^{5} + 4x^{4}) dx$
 $= \pi \left[\frac{1}{7}x^{7} - \frac{2}{3}x^{e} + \frac{4}{5}x^{5}\right]_{0}^{2}$
 $= \pi \left(\frac{128}{7} - \frac{128}{3} + \frac{128}{5}\right)$
 $= \frac{128}{105}\pi$

[5]

3.
$$y = \sqrt{x} \implies x = y^{2}$$

Volume $= \int_{o}^{2} \pi x^{2} dy$
 $= \pi \int_{o}^{2} (y^{2})^{2} dy$
 $= \pi \int_{o}^{2} y^{4} dy$
 $= \pi \left[\frac{1}{5} y^{5}\right]_{o}^{2}$
 $= \pi \left(\frac{32}{5} - 0\right)$
 $= \frac{32}{5} \pi$

[5]

Edexcel AS FM Further calculus Assessment solns

(ii)
$$y = \frac{1}{(x+1)^3} \Longrightarrow (x+1)^3 = \frac{1}{y} \Longrightarrow x+1 = y^{-\frac{1}{3}} \Longrightarrow x = y^{-\frac{1}{3}} - 1$$

The volume of the part above the dotted line is given by

Volume =
$$\int_{1/g}^{1} \pi x^{2} dy$$

= $\int_{1/g}^{1} \pi (y^{-\frac{1}{3}} - 1)^{2} dy$
= $\int_{1/g}^{1} \pi (y^{-\frac{2}{3}} - 2y^{-\frac{1}{3}} + 1) dy$
= $\pi [3y^{\frac{1}{3}} - 3y^{\frac{2}{3}} + y]_{1/g}^{1}$
= $\pi (3 - 3 + 1 - (3 \times \frac{1}{2} - 3 \times \frac{1}{4} + \frac{1}{g}))$
= $\frac{1}{g} \pi$

The volume of the part below the dotted line is a cylinder, radius 1 and height $\frac{1}{g}$, so this has volume $\pi \times 1^2 \times \frac{1}{g} = \frac{1}{g}\pi$ Total volume $= \frac{1}{g}\pi + \frac{1}{g}\pi = \frac{1}{4}\pi$

[7]