Edexcel AS Further Maths Further calculus

Topic assessment

1. Find the volume of the solid generated when the region bounded by the curve $y=3 x-x^{2}$, the x axis and the lines $x=1$ and $x=2$, is rotated through 360° about the x axis.
2. Find the volume formed by rotating completely about the x axis the region bounded by the curve $y=x^{3}-2 x^{2}$ and the x axis.
3. The region formed by $y=\sqrt{x}, y=2$ and the y axis is rotated through 360° about the y axis. Find the volume generated.
4. A curve has equation $y=\frac{1}{(1+x)^{3}}$.
(i) Sketch the curve for $x>0$ and shade the region enclosed by the coordinate axes and the line $x=1$.
(ii) The shaded region is rotated through 360° about the y-axis. Find the volume of the solid generated.

Edexcel AS FM Further calculus Assessment solns
Solutions to topic assessment

1. volume $=\int_{1}^{2} \pi y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{1}^{2}\left(3 x-x^{2}\right)^{2} d x \\
& =\pi \int_{1}^{2}\left(9 x^{2}-6 x^{3}+x^{4}\right) d x \\
& =\pi\left[3 x^{3}-\frac{3}{2} x^{4}+\frac{1}{5} x^{5}\right]_{1}^{2} \\
& =\pi\left(24-24+\frac{32}{5}-\left(3-\frac{3}{2}+\frac{1}{5}\right)\right) \\
& =\frac{47}{10} \pi
\end{aligned}
$$

2. $y=x^{3}-2 x^{2}$

When $y=0, x^{2}(x-2)=0$

$$
x=0 \text { or } x=2
$$

volume $=\int_{0}^{2} \pi y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{2}\left(x^{3}-2 x^{2}\right)^{2} d x \\
& =\pi \int_{0}^{2}\left(x^{6}-4 x^{5}+4 x^{4}\right) d x \\
& =\pi\left[\frac{1}{7} x^{7}-\frac{2}{3} x^{6}+\frac{4}{5} x^{5}\right]_{0}^{2} \\
& =\pi\left(\frac{128}{7}-\frac{128}{3}+\frac{128}{5}\right) \\
& =\frac{128}{105} \pi
\end{aligned}
$$

3. $y=\sqrt{x} \Rightarrow x=y^{2}$

$$
\begin{aligned}
\text { volume } & =\int_{0}^{2} \pi x^{2} d y \\
& =\pi \int_{0}^{2}\left(y^{2}\right)^{2} d y \\
& =\pi \int_{0}^{2} y^{4} d y \\
& =\pi\left[\frac{1}{5} y^{5}\right]_{0}^{2} \\
& =\pi\left(\frac{32}{5}-0\right) \\
& =\frac{32}{5} \pi
\end{aligned}
$$

Edexcel AS FM Further calculus Assessment solns

4. (i)

(ii) $y=\frac{1}{(x+1)^{3}} \Rightarrow(x+1)^{3}=\frac{1}{y} \Rightarrow x+1=y^{-\frac{1}{3}} \Rightarrow x=y^{-\frac{1}{3}}-1$

The volume of the part above the dotted line is given by

$$
\begin{aligned}
\text { volume } & =\int_{1 / 8}^{1} \pi x^{2} d y \\
& =\int_{1 / 8}^{1} \pi\left(y^{-\frac{1}{3}}-1\right)^{2} d y \\
& =\int_{1 / 8}^{1} \pi\left(y^{-\frac{2}{3}}-2 y^{-\frac{1}{3}}+1\right) d y \\
& =\pi\left[3 y^{\frac{1}{3}}-3 y^{\frac{2}{3}}+y\right]_{1 / 8}^{1} \\
& =\pi\left(3-3+1-\left(3 \times \frac{1}{2}-3 \times \frac{1}{4}+\frac{1}{8}\right)\right) \\
& =\frac{1}{8} \pi
\end{aligned}
$$

The volume of the part below the dotted line is a cylinder, radius 1 and height $\frac{1}{8}$, so this has volume $\pi \times 1^{2} \times \frac{1}{8}=\frac{1}{8} \pi$
Total volume $=\frac{1}{8} \pi+\frac{1}{8} \pi=\frac{1}{4} \pi$

