Edexcel AS Further Mathematics Vectors

Topic assessment

1. (i) Work out the angle between the vectors $\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$
(ii) Show that the lines $\frac{x-2}{-1}=\frac{y-1}{2}=\frac{z}{4}$ and $\frac{x+1}{2}=\frac{y-3}{-5}=\frac{z-2}{3}$ are perpendicular to each other.
2. (i) Find the vector equation of the line joining $\mathrm{A}(2,-1,0)$ to $\mathrm{B}(3,-2,-5)$.
(ii) Verify that A and B both lie on the plane $2 x-3 y+z=7$.
(iii) Write down the vector equation of the line passing through A which is perpendicular to the plane.
3. The points A, B and C have coordinates $(2,-1,3),(4,-2,0)$ and $(1,-5,0)$ respectively.
(i) Work out $\overrightarrow{\mathrm{AB}} \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ and $\overrightarrow{\mathrm{BC}} \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.
(ii) Find the Cartesian equation of the plane ABC .
4. The position vectors of A and B are as follows:

$$
\begin{array}{ll}
\text { A: } & \mathbf{a}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k} \\
\text { B: } & \mathbf{b}=2 \mathbf{i}+4 \mathbf{j}-\mathbf{k}
\end{array}
$$

(i) Find the vector equation of the line AB .
(ii) The line AB meets the plane $6 x-y-3 z+13=0$ at the point C .

Find the position vector of C.
5. A plane has equation $2 x-2 y+z=5$.
(i) Write down a vector normal to the plane.
(ii) Another plane has equation $p x+7 z=3$. The angle between the two planes is 60°. Find, in exact form, the possible values of p.
6. Three planes have equations $\Pi_{1} 3 x-2 y-4 z=5$

$$
\begin{array}{ll}
\Pi_{2} & 2 x-y=3 \\
\Pi_{3} & x+y+12 z=1
\end{array}
$$

(i) Show that the planes form a triangular prism.
(ii) Find the angle between the planes Π_{1} and Π_{2}.

Edexcel AS FM Vectors Assessment solutions

7. Four points have coordinates $\mathrm{A}(3,9,5), \mathrm{B}(1,14,10), \mathrm{C}(5,0,-8)$ and $\mathrm{D}(13,-4,4)$. The line L passes through A and B , and the line M passes through C and D. Show that the lines L and M intersect, and find the coordinates of their point of intersection.
8. Three points have coordinates $\mathrm{A}(1,-8,12), \mathrm{B}(-5,7,24)$ and $\mathrm{C}(3,5,8)$.

Find the shortest distance from C to the line AB .
9. Show that the lines $\mathbf{r}=\left(\begin{array}{c}2 \\ 8 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}8 \\ -12 \\ -11\end{array}\right)+\mu\left(\begin{array}{c}-5 \\ 13 \\ 16\end{array}\right)$ are skew, and find the distance between them.

Total 60 marks

Edexcel AS FM Vectors Assessment solutions

Solutions to topic assessment

1. (i) using the formula: $\cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$

Let $\underline{a}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right) \Rightarrow|\underline{a}|=\sqrt{2^{2}+1^{2}+4^{2}}=\sqrt{4+1+16}=\sqrt{21}$
and $\underline{b}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right) \Rightarrow|\underline{b}|=\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$
also $\underline{a} \cdot \underline{b}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)=2 \times 1+1 \times(-2)+4 \times 3=2+(-2)+12=12$
so $\cos \theta=\frac{12}{\sqrt{14} \sqrt{21}}=0.699 \ldots \Rightarrow \theta=45.6^{\circ}$ to 3 s.f.
(ii) The Lines are perpendicularifthe angle between the two direction vectors is 90°. This means the scalar product of the two direction vectors is 0 .
so $\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -5 \\ 3\end{array}\right)=(-1) \times 2+2 \times(-5)+4 \times 3=-2+(-10)+12=0$
as required.
2. (i) The vector equation of a lineis $\underline{r}=\overrightarrow{O A}+\lambda \overrightarrow{A B}$
and $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{c}3 \\ -2 \\ -5\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ -5\end{array}\right)$
So the equation of the line is $\underline{r}=\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ -5\end{array}\right)$
(ii) Substitute the coordinates into the equation of the plane:
$A(2,-1,0): 2 \times 2-3 \times(-1)+0=4+3=7$
$B(3,-2,-5): 2 \times 3-3 \times(-2)+(-5)=6+6-5=7$ as required.

Edexcel AS FM Vectors Assessment solutions

(iii) A vector normal to theplaneis found by the coefficients of x, y and z in the
equation of the plane ie. $\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$
So the equation is: $\underline{r}=\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$.
3. (i) $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ -3\end{array}\right)$
$\overrightarrow{A B} \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ -3\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=2+1-3=0$
$\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=\left(\begin{array}{c}1 \\ -5 \\ 0\end{array}\right)-\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right)=\left(\begin{array}{c}-3 \\ -3 \\ 0\end{array}\right)$
$\overrightarrow{B C} \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{c}-3 \\ -3 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=-3+3+0=0$
(ii) The vector $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ is perpendicular to two lines on the plane and so it must be perpendicular to the plane.
The equation of the plane is $\underset{\sim}{r} \sim \sim \sim \sim n$

$$
\underset{\sim}{r} \cdot\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=2+1+3=6
$$

so the cartesian equation of the plane is $x-y+z=6$

Edexcel AS FM Vectors Assessment solutions

4. (i) Direction vectoris $\underline{b}-\underline{a}=\left(\begin{array}{c}2 \\ 4 \\ -1\end{array}\right)-\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)=\left(\begin{array}{c}1 \\ 6 \\ -4\end{array}\right)$

The equation of the line is $\underline{r}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 6 \\ -4\end{array}\right)$.
(ii) The line $A B$ is: $\underline{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 6 \\ -4\end{array}\right)$

So reading across: $x=1+\lambda$

$$
\begin{aligned}
& y=-2+6 \lambda \\
& z=3-4 \lambda
\end{aligned}
$$

Substituting intothe equation of theplane $6 x-y-3 z+13=0$:

$$
\begin{aligned}
& 6(1+\lambda)-(-2+6 \lambda)-3(3-4 \lambda)+13=0 \\
& 12+12 \lambda=0 \\
& \Rightarrow \lambda=-1
\end{aligned}
$$

Substitute $\lambda=-1$ into the line $A B: \underline{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)-1\left(\begin{array}{c}1 \\ 6 \\ -4\end{array}\right)=\left(\begin{array}{c}0 \\ -8 \\ 7\end{array}\right)$
so the position vector of $\mathrm{c} i s: \underline{c}=-8 j+7 k$
5. (i) Normalvectoris $\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$
(ii) Normal vector for second plane is $n_{2}=\left(\begin{array}{l}p \\ 0 \\ 7\end{array}\right) \Rightarrow\left|\tilde{n}_{2}\right|^{2}=p^{2}+49$

For first plane, $n_{1}=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right) \Rightarrow\left|n_{1}\right|^{2}=4+4+1=9$
$\tilde{\sim}_{1} \cdot n_{2}=2 p+7$

Edexcel AS FM Vectors Assessment solutions

$\cos \theta=\frac{\tilde{n}_{1} \cdot n_{2}}{\left|\tilde{\sim}_{1}\right|\left|\tilde{n}_{2}\right|}$
$\frac{1}{2}=\frac{2 p+7}{3 \sqrt{p^{2}+4 g}}$
$3 \sqrt{p^{2}+49}=2(2 p+7)$
squaring both sides: $g\left(p^{2}+49\right)=4(2 p+7)^{2}$

$$
\begin{gathered}
9 p^{2}+441=16 p^{2}+112 p+196 \\
7 p^{2}+112 p-245=0 \\
p^{2}+16 p-35=0 \\
p=\frac{-16 \pm \sqrt{16^{2}-4 \times 1 \times-35}}{2}=\frac{-16 \pm \sqrt{396}}{2}=-8 \pm 3 \sqrt{11}
\end{gathered}
$$

6. (i) (1) $3 x-2 y-4 z=5$
(2) $2 x-y=3$
(3) $x+y+12 z=1$
(1) $+2 \times(3) \Rightarrow 5 x+20 z=7 \Rightarrow x+4 z=\frac{7}{5}$
$(2)+(3) \quad \Rightarrow 3 x+12 z=4 \Rightarrow x+4 z=\frac{4}{3}$
so the equations are inconsistent, and since no equation is a multiple of any other, none of the planes are parallel. So they must form a triangular prism.
[3]
(ii) Angle between planes is angle between the normalvectors $n_{1}=\left(\begin{array}{c}3 \\ -2 \\ -4\end{array}\right)$ and $n_{2}=\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
${\underset{\sim}{n}}_{1} \cdot \tilde{\sim}_{2}=6+2+0=8$
$\left|n_{1}\right|=\sqrt{9+4+16}=\sqrt{29}$
$\left|\sim_{2}\right|=\sqrt{4+1+0}=\sqrt{5}$
$\cos \theta=\frac{8}{\sqrt{29} \sqrt{5}}$
$\theta=48.4^{\circ}$
The angle between the planes is 48.4° (3 s.f.)

Edexcel AS FM Vectors Assessment solutions

7. The equation of $A B$ is $\underline{r}=\left(\begin{array}{l}3 \\ 9 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 5 \\ 5\end{array}\right)$.

The equation of $C D$ is $\underline{r}=\left(\begin{array}{c}5 \\ 0 \\ -8\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$.
At the point of intersection, if there is one,

$$
\left.\begin{array}{rl}
3-2 \lambda & =5+2 \mu \\
9+5 \lambda & =-\mu \\
5 & +5 \lambda
\end{array}\right) \Rightarrow \begin{aligned}
\lambda+\mu+3 \mu & =-1 \\
5 \lambda+\mu & =-9 \\
5 \lambda-3 \mu & =-13
\end{aligned} \text { (2) }
$$

In equation (3), $\mathrm{LHS}=5 \times-2-3 \times 1=-13=$ RHS .
The three equations are consistent, so the lines intersect.
The point of intersection is $(7,-1,-5)$.
8. $\overrightarrow{A B}=\left(\begin{array}{c}-6 \\ 15 \\ 12\end{array}\right)=3\left(\begin{array}{c}-2 \\ 5 \\ 4\end{array}\right)$

Equation of A is $\underset{\sim}{r}=\left(\begin{array}{c}1 \\ -8 \\ 12\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 5 \\ 4\end{array}\right)$
Let M be the point on $A B$ nearest to C
$\overrightarrow{O M}=\left(\begin{array}{c}1-2 \lambda \\ -8+5 \lambda \\ 12+4 \lambda\end{array}\right)$
$\overrightarrow{C M}=\left(\begin{array}{c}1-2 \lambda \\ -8+5 \lambda \\ 12+4 \lambda\end{array}\right)-\left(\begin{array}{l}3 \\ 5 \\ 8\end{array}\right)=\left(\begin{array}{c}-2-2 \lambda \\ -13+5 \lambda \\ 4+4 \lambda\end{array}\right)$

Edexcel AS FM Vectors Assessment solutions

$$
\begin{aligned}
& \overrightarrow{C M} \text { is perpendicularto } A B \text {, so }\left(\begin{array}{c}
-2-2 \lambda \\
-13+5 \lambda \\
4+4 \lambda
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
5 \\
4
\end{array}\right)=0 \\
& \\
& -2(-2-2 \lambda)+5(-13+5 \lambda)+4(4+4 \lambda)=0 \\
& \\
& 4+4 \lambda-65+25 \lambda+16+16 \lambda=0 \\
& 45 \lambda=45 \\
& \lambda=1 \\
& \overrightarrow{C M}=\left(\begin{array}{c}
-4 \\
-8 \\
8
\end{array}\right)=4\left(\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right) \\
& \overrightarrow{C M}=4 \sqrt{1^{2}+2^{2}+2^{2}}=4 \sqrt{9}=12
\end{aligned}
$$

9. If the lines intersect, $\left(\begin{array}{c}2 \\ 8 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}8 \\ -12 \\ -11\end{array}\right)+\mu\left(\begin{array}{c}-5 \\ 13 \\ 16\end{array}\right)$
so $2+2 \lambda=8-5 \mu$
$8+2 \lambda=-12+13 \mu$
$-1-\lambda=-11+16 \mu$
(1) $2 \lambda+5 \mu=6$
(2) $2 \lambda-13 \mu=-20$
(3) $\lambda+16 \mu=10$
(1) $-(2) \Rightarrow 18 \mu=26 \Rightarrow \mu=\frac{13}{9}, \lambda=-\frac{11}{18}$

Substituting into (3): $\lambda+16 \mu=-\frac{11}{18}+16 \times \frac{13}{9}=\frac{45}{2}$
so there are no values of λ and μ which satisfy all three equations, and so the lines do notintersect.
The direction vectors $\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}-5 \\ 13 \\ 16\end{array}\right)$ arenot scalar multiples of each other, so
they are not parallel and therefore the lines are not parallel.
Therefore the lines are skew.
Let P and Q be the points on the two lines that are closest to each other.

Edexcel AS FM Vectors Assessment solutions

$$
\begin{aligned}
& \overrightarrow{O P}=\left(\begin{array}{c}
2+2 \lambda \\
8+2 \lambda \\
-1-\lambda
\end{array}\right) \text { and } \overrightarrow{O Q}=\left(\begin{array}{c}
8-5 \mu \\
-12+13 \mu \\
-11+16 \mu
\end{array}\right) \\
& \overrightarrow{P Q}=\left(\begin{array}{c}
8-5 \mu \\
-12+13 \mu \\
-11+16 \mu
\end{array}\right)-\left(\begin{array}{c}
2+2 \lambda \\
8+2 \lambda \\
-1-\lambda
\end{array}\right)=\left(\begin{array}{c}
6-5 \mu-2 \lambda \\
-20+13 \mu-2 \lambda \\
-10+16 \mu+\lambda
\end{array}\right) \\
& \overrightarrow{P Q} \text { is perpendicularto } \underset{\sim}{r}=\left(\begin{array}{l}
2 \\
8 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \\
& \text { so }\left(\begin{array}{c}
6-5 \mu-2 \lambda \\
-20+13 \mu-2 \lambda \\
-10+16 \mu+\lambda
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
2 \\
-1
\end{array}\right)=0 \\
& 2(6-5 \mu-2 \lambda)+2(-20+13 \mu-2 \lambda)-(-10+16 \mu+\lambda)=0 \\
& -18-9 \lambda=0 \\
& \lambda=-2
\end{aligned}
$$

$\overrightarrow{P Q}$ is perpendicularto $\underset{\sim}{r}=\left(\begin{array}{c}8 \\ -12 \\ -11\end{array}\right)+\mu\left(\begin{array}{c}-5 \\ 13 \\ 16\end{array}\right)$
so $\left(\begin{array}{c}6-5 \mu-2 \lambda \\ -20+13 \mu-2 \lambda \\ -10+16 \mu+\lambda\end{array}\right) \cdot\left(\begin{array}{c}-5 \\ 13 \\ 16\end{array}\right)=0$
$-5(6-5 \mu-2 \lambda)+13(-20+13 \mu-2 \lambda)+16(-10+16 \mu+\lambda)=0$
$-450+450 \mu=0$
$\mu=1$
$\overrightarrow{P Q}=\left(\begin{array}{c}5 \\ -3 \\ 4\end{array}\right)$
$|\overrightarrow{P Q}|=\sqrt{5^{2}+3^{2}+4^{2}}=\sqrt{50}=5 \sqrt{2}$
so the distance between the lines is $5 \sqrt{2}$.

