Edexcel AS Further Maths Sequences and series "integral

Topic assessment

1. Find $\sum_{r=1}^{n}(6 r-1)(4 r-1)$, giving your answer in its simplest form.
2. Prove by induction that

$$
\begin{equation*}
\sum_{r=1}^{n}\left(3 r^{2}-2 r\right)=\frac{1}{2} n(n+1)(2 n-1) \tag{7}
\end{equation*}
$$

3. Prove by induction that

$$
\left(\begin{array}{cc}
-1 & -4 \tag{6}\\
1 & 3
\end{array}\right)^{n}=\left(\begin{array}{cc}
1-2 n & -4 n \\
n & 2 n+1
\end{array}\right)
$$

4. A sequence of real numbers $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
\begin{equation*}
u_{1}=-1 \quad \text { and } \quad u_{n+1}=\frac{3 u_{n}}{5 u_{n}+6} \text { for } n \geq 1 \tag{6}
\end{equation*}
$$

Prove by induction that $u_{n}=\frac{3}{2^{n}-5}$.
5. Find the sum of the series

$$
\begin{equation*}
1 \times 9+2 \times 33+3 \times 73+\ldots+n\left(8 n^{2}+1\right) \tag{5}
\end{equation*}
$$

giving your answer in a fully factorised form.
6. Prove by induction that $13^{n}-6^{n-2}$ is a multiple of 7 for all $n \geq 2$.
7. Prove by induction that $\sum_{r=1}^{n} r 3^{r}=\frac{3}{4}+\frac{1}{4}(2 n-1) 3^{n+1}$.
8. Prove by induction that $\sum_{r=1}^{n} \frac{2^{r}\left(r^{2}-2\right)}{(r+1)^{2}(r+2)^{2}}=\frac{2^{n+1}}{(n+2)^{2}}-\frac{1}{2}$

Total 50 marks

Edexcel AS FM Series assessment solutions

Solutions to topic assessment

1. $\sum_{r=1}^{n}(6 r-1)(4 r-1)=\sum_{r=1}^{n}\left(24 r^{2}-10 r+1\right)$

$$
\begin{aligned}
& =24 \sum_{r=1}^{n} r^{2}-10 \sum_{r=1}^{n} r+\sum_{r=1}^{n} 1 \\
& =24 \times \frac{1}{6} n(n+1)(2 n+1)-10 \times \frac{1}{2} n(n+1)+n \\
& =n(4(n+1)(2 n+1)-5(n+1)+1) \\
& =n\left(8 n^{2}+12 n+4-5 n-5+1\right) \\
& =n\left(8 n^{2}+7 n\right) \\
& =n^{2}(8 n+7)
\end{aligned}
$$

2. To prove: $\sum_{r=1}^{n}\left(3 r^{2}-2 r\right)=\frac{1}{2} n(n+1)(2 n-1)$.

When $n=1$, L.H.S. $=3-2=1$

$$
\text { R.H.S. }=\frac{1}{2} \times 1 \times 2 \times 1=1
$$

so the result is true for $n=1$.

$$
\begin{aligned}
& \text { Assume } \sum_{r=1}^{k}\left(3 r^{2}-2 r\right)=\frac{1}{2} k(k+1)(2 k-1) \\
& \qquad \begin{aligned}
\sum_{r=1}^{k+1}\left(3 r^{2}-2 r\right) & =\frac{1}{2} k(k+1)(2 k-1)+3(k+1)^{2}-2(k+1) \\
& =\frac{1}{2}(k+1)\left(2 k^{2}-k+6 k+6-4\right) \\
& =\frac{1}{2}(k+1)\left(2 k^{2}+5 k+2\right) \\
& =\frac{1}{2}(k+1)(k+2)(2 k+1) \\
& =\frac{1}{2}(k+1)(k+2)(2(k+1)-1)
\end{aligned}
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$.
since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
3. To prove: $\left(\begin{array}{cc}-1 & -4 \\ 1 & 3\end{array}\right)^{n}=\left(\begin{array}{cc}1-2 n & -4 n \\ n & 2 n+1\end{array}\right)$

For $n=1,\left(\begin{array}{cc}1-2 n & -4 n \\ n & 2 n+1\end{array}\right)=\left(\begin{array}{cc}1-2 & -4 \\ 1 & 2+1\end{array}\right)=\left(\begin{array}{cc}-1 & -4 \\ 1 & 3\end{array}\right)$
so true for $n=1$.

Edexcel AS FM Series assessment solutions

Assume true for $n=k$, so $\left(\begin{array}{cc}-1 & -4 \\ 1 & 3\end{array}\right)^{k}=\left(\begin{array}{cc}1-2 k & -4 k \\ k & 2 k+1\end{array}\right)$
For $n=k+1$,

$$
\begin{aligned}
\left(\begin{array}{cc}
-1 & -4 \\
1 & 3
\end{array}\right)^{k+1} & =\left(\begin{array}{cc}
1-2 k & -4 k \\
k & 2 k+1
\end{array}\right)\left(\begin{array}{cc}
-1 & -4 \\
1 & 3
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1+2 k-4 k & -4+8 k-12 k \\
-k+2 k+1 & -4 k+6 k+3
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1-2 k & -4-4 k \\
k+1 & 2 k+3
\end{array}\right) \\
& =\left(\begin{array}{cc}
1-2(k+1) & -4(k+1) \\
k+1 & 2(k+1)+1
\end{array}\right)
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$.
since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
4. To prove that $u_{n}=\frac{3}{2^{n}-5}$.

When $n=1, \quad u_{1}=\frac{3}{2-5}=\frac{3}{-3}=-1$
so the result is true for $n=1$.
Assume $u_{k}=\frac{3}{2^{k}-5}$

$$
\begin{aligned}
u_{k+1} & =\frac{3 u_{k}}{5 u_{k}+6} \\
& =\frac{3\left(\frac{3}{2^{k}-5}\right)}{5\left(\frac{3}{2^{k}-5}\right)+6} \\
& =\frac{9}{15+6\left(2^{k}-5\right)} \\
& =\frac{3}{5+2 \times 2^{k}-10} \\
& =\frac{3}{2^{k+1}-5}
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$.
Since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.

Edexcel AS FM Series assessment solutions

5. $1 \times 9+2 \times 33+3 \times 73+\ldots+n\left(8 n^{2}+1\right)=\sum_{r=1}^{n} r\left(8 r^{2}+1\right)$

$$
\begin{aligned}
& =8 \sum_{r=1}^{n} r^{3}+\sum_{r=1}^{n} r \\
& =8 \times \frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{2} n(n+1) \\
& =\frac{1}{2} n(n+1)(4 n(n+1)+1) \\
& =\frac{1}{2} n(n+1)\left(4 n^{2}+4 n+1\right) \\
& =\frac{1}{2} n(n+1)(2 n+1)^{2}
\end{aligned}
$$

6. To prove that $13^{n}-6^{n-2}$ is a multiple of 7 for all $n \geq 2$.

For $n=2,13^{n}-6^{n-2}=13^{2}-6^{0}=169-1=168$
so it is true for $n=2$.

Assume it is true for $n=k$, so $13^{k}-6^{k-2}=7 p$ for some integer p.
For $n=k+1,13^{k+1}-6^{(k+1)-2}=13 \times 13^{k}-6^{k-1}$

$$
\begin{aligned}
& =13\left(7 p+6^{k-2}\right)-6^{k-1} \\
& =91 p+13 \times 6^{k-2}-6^{k-1} \\
& =91 p+13 \times 6^{k-2}-6 \times 6^{k-2} \\
& =91 p+7 \times 6^{k-2} \\
& =7\left(13 p-6^{k-2}\right)
\end{aligned}
$$

so it is a multiple of 7 for $n=k+1$.
So if the result is true for $n=k$, then it is true for $n=k+1$.
since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
7. To prove that $\sum_{r=1}^{n} r 3^{r}=\frac{3}{4}+\frac{1}{4}(2 n-1) 3^{n+1}$.

When $n=1$, L.H.S. $=1 \times 3=3$
R.H.S. $=\frac{3}{4}+\frac{1}{4} \times 1 \times 3^{2}=\frac{3}{4}+\frac{9}{4}=\frac{12}{4}=3$
so the result is true for $n=1$.
Assume $\sum_{r=1}^{k} r 3^{r}=\frac{3}{4}+\frac{1}{4}(2 k-1) 3^{k+1}$

Edexcel AS FM Series assessment solutions

$$
\begin{aligned}
\sum_{r=1}^{k+1} r 3^{r} & =\frac{3}{4}+\frac{1}{4}(2 k-1) 3^{k+1}+(k+1) 3^{k+1} \\
& =\frac{3}{4}+\frac{1}{4}(2 k-1+4(k+1)) 3^{k+1} \\
& =\frac{3}{4}+\frac{1}{4}(6 k+3) 3^{k+1} \\
& =\frac{3}{4}+\frac{1}{4}(2 k+1) \times 3 \times 3^{k+1} \\
& =\frac{3}{4}+\frac{1}{4}(2(k+1)-1) 3^{k+2}
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$.
since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
8. To prove that $\sum_{r=1}^{n} \frac{2^{r}\left(r^{2}-2\right)}{(r+1)^{2}(r+2)^{2}}=\frac{2^{n+1}}{(n+2)^{2}}-\frac{1}{2}$.

When $n=1, \quad$ L.H.S. $=\frac{2(1-2)}{2^{2} \times 3^{2}}=-\frac{1}{18}$

$$
\text { R.H.S. }=\frac{2^{2}}{3^{2}}-\frac{1}{2}=\frac{4}{9}-\frac{1}{2}=-\frac{1}{18}
$$

So the result is true for $n=1$.

$$
\begin{aligned}
& \text { Assume } \sum_{r=1}^{k} \frac{2^{r}\left(r^{2}-2\right)}{(r+1)^{2}(r+2)^{2}}=\frac{2^{k+1}}{(k+2)^{2}}-\frac{1}{2} \\
& \sum_{r=1}^{k+1} \frac{2^{r}\left(r^{2}-2\right)}{(r+1)^{2}(r+2)^{2}}=\frac{2^{k+1}}{(k+2)^{2}}-\frac{1}{2}+\frac{2^{k+1}\left((k+1)^{2}-2\right)}{(k+2)^{2}(k+3)^{2}} \\
& =\frac{2^{k+1}(k+3)^{2}+2^{k+1}\left((k+1)^{2}-2\right)}{(k+2)^{2}(k+3)^{2}}-\frac{1}{2} \\
& =\frac{2^{k+1}\left(k^{2}+6 k+9+k^{2}+2 k+1-2\right)}{(k+2)^{2}(k+3)^{2}}-\frac{1}{2} \\
& =\frac{2^{k+1}\left(2 k^{2}+8 k+8\right)}{(k+2)^{2}(k+3)^{2}}-\frac{1}{2} \\
& =\frac{2^{k+1} \times 2(k+2)^{2}}{(k+2)^{2}(k+3)^{2}}-\frac{1}{2} \\
& =\frac{2^{k+2}}{(k+3)^{2}}-\frac{1}{2}
\end{aligned}
$$

So if the result is true for $n=k$, then it is true for $n=k+1$.
Since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.

