Edexcel AS Further Maths Roots of polynomials

Topic assessment

1.	The quadratic equation $2z^2 - 4z + 5 = 0$ has roots α and β . (i) Write down the values of $\alpha + \beta$ and $\alpha\beta$. (ii) Find the quadratic equation with roots $3\alpha - 1$, $3\beta - 1$. (iii)Find the cubic equation which has roots α , β and $\alpha + \beta$.	[2] [3] [4]
2.	 The equation z³ + kz² - 4z - 12 = 0 has roots α, β and γ. (i) Write down the values of αβ + βγ + γα and αβγ, and express k in terms of and γ. (ii) For the case where γ = -α, solve the equation and find the value of k. (iii)For the case k = 5, find a cubic equation with roots 2 - α, 2 - β, 2 - γ. 	α, β [3] [4] [4]
3.	The complex number $3 + 2i$ is a root of the equation $2x^3 + px^2 + 20x + q = 0$ where <i>p</i> and <i>q</i> are real numbers. (i) Find the other two roots of the cubic equation. (ii) Find the values of <i>p</i> and <i>q</i> .	, [4] [4]
4.	The complex number 2 + 3i is a root of the equation $4z^4 - 12z^3 + 33z^2 + 64z - 39 = 0$ Solve the equation.	[5]
5.	The cubic equation $2z^3 + pz^2 + qz + r = 0$ has roots $\frac{\alpha}{k}$, α , $k\alpha$. (i) Express p , q and r in terms of k and α . (ii) Show that $2q^3 = p^3r$.	[3] [3]

- (iii)Solve the equation for the case where p = q = -3. [4]
- 6. The equation x⁴ 6x³ 73x² + kx + m = 0 has two positive roots, α, β and two negative roots γ, δ. It is given that αβ = γδ = 4.
 (i) Find the values of the constants k and m. [4]
 (ii) Show that (α + β)(γ + δ) = -81. [3]
 (iii)Find the quadratic equation which has roots α + β and γ + δ. [2]
 (iv)Find α + β and γ + δ. [3]
 (v) Show that α² 3(1 + √10)α + 4 = 0, and find similar quadratic equations satisfied by β, γ and δ. [5]

Total 60 marks

Solutions to topic assessment

1. (i)
$$2z^{2} - 4z + 5 = 0$$

 $\alpha + \beta = -\frac{b}{a} = -\frac{-4}{2} = 2$
 $\alpha\beta = \frac{c}{a} = \frac{5}{2}$
[2]
(ii) Let $w = 3z - 1$, so $z = \frac{w+1}{3}$
Substituting into quadratic equation:
 $2\left(\frac{w+1}{3}\right)^{2} - 4\left(\frac{w+1}{3}\right) + 5 = 0$
 $2(w+1)^{2} - 12(w+1) + 45 = 0$
 $2w^{2} + 4w + 2 - 12w - 12 + 45 = 0$
 $2w^{2} - 8w + 35 = 0$
[3]
(iii) The original quadratic equation has roots α and β .

The value of $\alpha + \beta = 2$ The cubic equation is therefore $(2z^2 - 4z + 5)(z - 2) = 0$ $2z^3 - 4z^2 + 5z - 4z^2 + 8z - 10 = 0$ $2z^3 - 8z^2 + 13z - 10 = 0$ [4]

2. (i)
$$z^{3} + kz^{2} - 4z - 12 = 0$$

 $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = -4$
 $\alpha\beta\gamma = -\frac{d}{a} = 12$
 $\alpha + \beta + \gamma = -\frac{b}{a} = -k$
 $k = -\alpha - \beta - \gamma$

(ii) If
$$\gamma = -\alpha$$
: $\alpha\beta - \beta\alpha - \alpha^2 = -4$
 $\alpha^2 = 4$
 $\alpha = \pm 2$
 $-\alpha^2\beta = 12$
 $-4\beta = 12$
 $\beta = -3$

The roots are 2, -2 and -3

[3]

$$k = -2 + 2 + 3 = 3$$
[4]
(iii) $z^{3} + 5z^{2} - 4z - 12 = 0$
 $w = 2 - z$ so $z = 2 - w$
Substituting into cubic equation:
 $(2 - w)^{3} + 5(2 - w)^{2} - 4(2 - w) - 12 = 0$
 $8 - 12w + 6w^{2} - w^{3} + 20 - 20w + 5w^{2} - 8 + 4w - 12 = 0$
 $w^{3} - 11w^{2} + 28w - 8 = 0$
[4]

3. (i) 3 + 2i is a root, so 3 - 2i is also a root.

$$\sum \alpha \beta = \frac{c}{a}$$

$$(3+2i)\alpha + (3-2i)\alpha + (3+2i)(3-2i) = \frac{20}{2}$$

$$6\alpha + 13 = 10$$

$$6\alpha = -3$$

$$\alpha = -\frac{1}{2}$$
The other two roots are $3 - 2i$ and $-\frac{1}{2}$.

(ii)
$$\sum \alpha = -\frac{b}{a}$$
$$3 + 2i + 3 - 2i - \frac{1}{2} = -\frac{p}{2}$$
$$5.5 = -\frac{p}{2}$$
$$p = -11$$
$$\alpha \beta \gamma = -\frac{d}{a}$$
$$-\frac{1}{2}(3 + 2i)(3 - 2i) = -\frac{q}{2}$$
$$q = 13$$

[4]

[4]

4. 2+3i is a root so 2-3i is also a root For the quadratic with roots $\alpha = 2+3i$ and $\beta = 2-3i$, $\alpha + \beta = 4$ and $\alpha\beta = 13$ so the quadratic factor is $z^2 - 4z + 13$ $4z^4 - 12z^3 + 33z^2 + 64z - 39 = 0$ $(z^2 - 4z + 13)(4z^2 + 4z - 3) = 0$ $(z^2 - 4z + 13)(2z + 3)(2x - 1) = 0$

The roots are
$$2 + 3i$$
, $2 - 3i$, $-\frac{3}{2}$ and $\frac{1}{2}$

5. (i) $2z^{3} + pz^{2} + qz + r = 0$

$$\sum \alpha = -\frac{b}{a}$$

$$\frac{a}{k} + \alpha + k\alpha = -\frac{p}{2}$$

$$p = -2\alpha \left(\frac{1}{k} + 1 + k\right)$$

$$\sum \alpha \beta = \frac{a}{a}$$

$$\left(\frac{\alpha}{k} \times \alpha\right) + (\alpha \times k\alpha) + \left(k\alpha \times \frac{\alpha}{k}\right) = \frac{q}{2}$$

$$q = 2\alpha^{2} \left(\frac{1}{k} + k + 1\right)$$

$$\alpha \beta \gamma = -\frac{a}{a}$$

$$\frac{a}{k} \times \alpha \times k\alpha = -\frac{r}{2}$$

$$r = -2\alpha^{3}$$
[3]

(ii) Dividing the first two equations: $\frac{p}{q} = \frac{-2\alpha}{2\alpha^{2}}$

$$\alpha = -\frac{q}{p}$$
Substituting into third equation: $r = -2 \left(-\frac{q}{p}\right)^{3}$

$$p^{3}r = 2q^{3}$$
[3]

(iii)
$$p = q = -3 \implies r = 2$$

 $r = -2\alpha^3 \implies 2 = -2\alpha^3 \implies \alpha = -1$

$$p = -2\alpha \left(\frac{1}{k} + 1 + k\right)$$

$$-3 = 2 \left(\frac{1}{k} + 1 + k\right)$$

$$-3k = 2 + 2k + 2k^{2}$$

$$2k^{2} + 5k + 2 = 0$$

$$(2k + 1) (k + 2) = 0$$

$$k = -\frac{1}{2} \text{ or } -2$$

The roots are $\frac{1}{2}$, -1 and 2.

[4]

6. (i)
$$x^4 - 6x^3 - 73x^2 + kx + m = 0$$

$$\alpha\beta\gamma\delta = m$$

$$4 \times 4 = m$$

$$m = 16$$

$$\alpha\beta\gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta = -k$$

$$4\gamma + 4\beta + 4\alpha + 4\delta = -k$$

$$k = -4(\alpha + \beta + \gamma + \delta)$$

$$k = -4 \times -\frac{b}{a}$$

$$k = 4 \times -6 = -24$$
[4]

(ii)
$$(\alpha + \beta)(\gamma + \delta) = \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta$$

 $= \sum \alpha\beta - (\alpha\beta + \gamma\delta)$
 $= \frac{c}{\alpha} - (4 + 4)$
 $= -73 - 8$
 $= -81$

(iii) Sum of roots of quadratic equation $= \alpha + \beta + \gamma + \delta = 6$ Product of roots of quadratic equation $= (\alpha + \beta) (\gamma + \delta) = -81$ Quadratic equation is therefore $x^2 - 6x - 81 = 0$

$$(iv) \quad x^{2} - 6x - 81 = 0$$

$$x = \frac{6 \pm \sqrt{36 - 4 \times 1 \times - 81}}{2} = 3 \pm 3\sqrt{10}$$

$$\alpha + \beta = 3 + 3\sqrt{10}$$

$$\gamma + \delta = 3 - 3\sqrt{10}$$

[3]

[3]

[2]

(v) $\alpha + \beta = 3 + 3\sqrt{10}$ and $\alpha\beta = 4$ so α and β are the roots of the quadratic equation $x^2 - 3(1 + \sqrt{10})x + 4 = 0$

so α satisfies $\alpha^2 - 3(1 + \sqrt{10})\alpha + 4 = 0$ and β satisfies $\beta^2 - 3(1 + \sqrt{10})\beta + 4 = 0$

 $\gamma + \delta = 3 - 3\sqrt{10}$ and $\gamma \delta = 4$ so γ and δ are the roots of the quadratic equation $\chi^2 - 3(1 - \sqrt{10})\chi + 4 = 0$

so γ satisfies	$\gamma^2 - 3(1 - \sqrt{10})\gamma + 4 = 0$
and δ satisfies	$\delta^2 - 3(1 - \sqrt{10})\delta + 4 = 0$

[5]

