Edexcel AS Further Maths Roots of polynomials "integral

Topic assessment

1. The quadratic equation $2 z^{2}-4 z+5=0$ has roots α and β.
(i) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(ii) Find the quadratic equation with roots $3 \alpha-1,3 \beta-1$.
(iii)Find the cubic equation which has roots α, β and $\alpha+\beta$.
2. The equation $z^{3}+k z^{2}-4 z-12=0$ has roots α, β and γ.
(i) Write down the values of $\alpha \beta+\beta \gamma+\gamma \alpha$ and $\alpha \beta \gamma$, and express k in terms of α, β and γ.
(ii) For the case where $\gamma=-\alpha$, solve the equation and find the value of k.
(iii)For the case $k=5$, find a cubic equation with roots $2-\alpha, 2-\beta, 2-\gamma$.
3. The complex number $3+2 \mathrm{i}$ is a root of the equation $2 x^{3}+p x^{2}+20 x+q=0$, where p and q are real numbers.
(i) Find the other two roots of the cubic equation.
(ii) Find the values of p and q.
4. The complex number $2+3 \mathrm{i}$ is a root of the equation

$$
4 z^{4}-12 z^{3}+33 z^{2}+64 z-39=0
$$

Solve the equation.
5. The cubic equation $2 z^{3}+p z^{2}+q z+r=0$ has roots $\frac{\alpha}{k}, \alpha, k \alpha$.
(i) Express p, q and r in terms of k and α.
(ii) Show that $2 q^{3}=p^{3} r$.
(iii) Solve the equation for the case where $p=q=-3$.
6. The equation $x^{4}-6 x^{3}-73 x^{2}+k x+m=0$ has two positive roots, α, β and two negative roots γ, δ. It is given that $\alpha \beta=\gamma \delta=4$.
(i) Find the values of the constants k and m.
(ii) Show that $(\alpha+\beta)(\gamma+\delta)=-81$.
(iii)Find the quadratic equation which has roots $\alpha+\beta$ and $\gamma+\delta$.
(iv)Find $\alpha+\beta$ and $\gamma+\delta$.
(v) Show that $\alpha^{2}-3(1+\sqrt{10}) \alpha+4=0$, and find similar quadratic equations satisfied by β, γ and δ.

Edexcel AS FM Roots of polys Assessment solns

Solutions to topic assessment

1. (i) $2 z^{2}-4 z+5=0$
$\alpha+\beta=-\frac{b}{a}=-\frac{-4}{2}=2$
$\alpha \beta=\frac{c}{a}=\frac{5}{2}$
(ii) Let $w=3 z-1$, so $z=\frac{w+1}{3}$

Substituting into quadratic equation:

$$
\begin{aligned}
& 2\left(\frac{w+1}{3}\right)^{2}-4\left(\frac{w+1}{3}\right)+5=0 \\
& 2(w+1)^{2}-12(w+1)+45=0 \\
& 2 w^{2}+4 w+2-12 w-12+45=0 \\
& 2 w^{2}-8 w+35=0
\end{aligned}
$$

(iii) The original quadratic equation has roots α and β.

The value of $\alpha+\beta=2$
The cubic equation is therefore $\left(2 z^{2}-4 z+5\right)(z-2)=0$

$$
\begin{aligned}
& 2 z^{3}-4 z^{2}+5 z-4 z^{2}+8 z-10=0 \\
& 2 z^{3}-8 z^{2}+13 z-10=0
\end{aligned}
$$

2. (i) $z^{3}+k z^{2}-4 z-12=0$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=-4$
$\alpha \beta \gamma=-\frac{d}{a}=12$
$\alpha+\beta+\gamma=-\frac{b}{a}=-k$
$k=-\alpha-\beta-\gamma$
(ii) If $\gamma=-\alpha: \quad \alpha \beta-\beta \alpha-\alpha^{2}=-4$

$$
\begin{aligned}
& \alpha^{2}=4 \\
& \alpha= \pm 2 \\
& -\alpha^{2} \beta=12 \\
& -4 \beta=12 \\
& \beta=-3
\end{aligned}
$$

The roots are $2,-2$ and -3

Edexcel AS FM Roots of polys Assessment solns
$k=-2+2+3=3$
(iii) $z^{3}+5 z^{2}-4 z-12=0$
$w=2-z$ so $z=2-w$
Substituting into cubic equation:

$$
\begin{aligned}
& (2-w)^{3}+5(2-w)^{2}-4(2-w)-12=0 \\
& 8-12 w+6 w^{2}-w^{3}+20-20 w+5 w^{2}-8+4 w-12=0 \\
& w^{3}-11 w^{2}+28 w-8=0
\end{aligned}
$$

3. (i) $3+2 i$ is a root, so $3-2 i$ is also a root.
$\sum \alpha \beta=\frac{c}{a}$
$(3+2 i) \alpha+(3-2 i) \alpha+(3+2 i)(3-2 i)=\frac{20}{2}$
$6 \alpha+13=10$
$6 \alpha=-3$
$\alpha=-\frac{1}{2}$
The other two roots are 3-2i and $-\frac{1}{2}$.
(ii) $\sum \alpha=-\frac{b}{a}$
$3+2 i+3-2 i-\frac{1}{2}=-\frac{P}{2}$
$5.5=-\frac{P}{2}$
$p=-11$
$\alpha \beta \gamma=-\frac{d}{a}$
$-\frac{1}{2}(3+2 i)(3-2 i)=-\frac{q}{2}$
$q=13$
4. $2+3 i$ is a root so $2-3 i$ is also a root

For the quadratic with roots $\alpha=2+3 i$ and $\beta=2-3 i$,
$\alpha+\beta=4$ and $\alpha \beta=13$
so the quadratic factor is $z^{2}-4 z+13$
$4 z^{4}-12 z^{3}+33 z^{2}+64 z-39=0$
$\left(z^{2}-4 z+13\right)\left(4 z^{2}+4 z-3\right)=0$
$\left(z^{2}-4 z+13\right)(2 z+3)(2 x-1)=0$

Edexcel AS FM Roots of polys Assessment solns

The roots are $2+3 i, 2-3 i,-\frac{3}{2}$ and $\frac{1}{2}$
5. (i) $2 z^{3}+p z^{2}+q z+r=0$

$$
\begin{aligned}
& \sum \alpha=-\frac{b}{a} \\
& \frac{\alpha}{k}+\alpha+k \alpha=-\frac{p}{2} \\
& p=-2 \alpha\left(\frac{1}{k}+1+k\right) \\
& \sum \alpha \beta=\frac{c}{a} \\
& \left(\frac{\alpha}{k} \times \alpha\right)+(\alpha \times k \alpha)+\left(k \alpha \times \frac{\alpha}{k}\right)=\frac{q}{2} \\
& q=2 \alpha^{2}\left(\frac{1}{k}+k+1\right) \\
& \alpha \beta \gamma=-\frac{d}{a} \\
& \frac{\alpha}{k} \times \alpha \times k \alpha=-\frac{r}{2} \\
& r=-2 \alpha^{3}
\end{aligned}
$$

(ii) Dividing the first two equations: $\frac{p}{q}=\frac{-2 \alpha}{2 \alpha^{2}}$

$$
\alpha=-\frac{q}{p}
$$

Substituting into third equation: $r=-2\left(-\frac{q}{p}\right)^{3}$

$$
p^{3} r=2 q^{3}
$$

(iii) $p=q=-3 \Rightarrow r=2$

$$
r=-2 \alpha^{3} \Rightarrow 2=-2 \alpha^{3} \Rightarrow \alpha=-1
$$

Edexcel AS FM Roots of polys Assessment solns

$$
\begin{aligned}
& p=-2 \alpha\left(\frac{1}{k}+1+k\right) \\
& -3=2\left(\frac{1}{k}+1+k\right) \\
& -3 k=2+2 k+2 k^{2} \\
& 2 k^{2}+5 k+2=0 \\
& (2 k+1)(k+2)=0 \\
& k=-\frac{1}{2} \text { or }-2
\end{aligned}
$$

The roots are $\frac{1}{2},-1$ and 2 .
6. (i) $x^{4}-6 x^{3}-73 x^{2}+k x+m=0$
$\alpha \beta \gamma \delta=m$
$4 \times 4=m$
$m=16$
$\alpha \beta \gamma+\beta \gamma \delta+\gamma \delta \alpha+\delta \alpha \beta=-k$
$4 \gamma+4 \beta+4 \alpha+4 \delta=-k$
$k=-4(\alpha+\beta+\gamma+\delta)$
$k=-4 \times-\frac{b}{a}$
$k=4 \times-6=-24$
(í) $(\alpha+\beta)(\gamma+\delta)=\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta$

$$
\begin{aligned}
& =\sum \alpha \beta-(\alpha \beta+\gamma \delta) \\
& =\frac{c}{a}-(4+4) \\
& =-73-8 \\
& =-81
\end{aligned}
$$

(iii) Sum of roots of quadratic equation $=\alpha+\beta+\gamma+\delta=6$

Product of roots of quadratic equation $=(\alpha+\beta)(\gamma+\delta)=-81$
Quadratic equation is therefore $x^{2}-6 x-81=0$
(iv) $x^{2}-6 x-81=0$
$x=\frac{6 \pm \sqrt{36-4 \times 1 \times-81}}{2}=3 \pm 3 \sqrt{10}$
$\alpha+\beta=3+3 \sqrt{10}$
$\gamma+\delta=3-3 \sqrt{10}$

Edexcel AS FM Roots of polys Assessment solns

(v) $\alpha+\beta=3+3 \sqrt{10}$ and $\alpha \beta=4$
so α and β are the roots of the quadratic equation

$$
x^{2}-3(1+\sqrt{10}) x+4=0
$$

so α satisfies

$$
\begin{aligned}
& \alpha^{2}-3(1+\sqrt{10}) \alpha+4=0 \\
& \beta^{2}-3(1+\sqrt{10}) \beta+4=0
\end{aligned}
$$

and β satisfies
$\gamma+\delta=3-3 \sqrt{10}$ and $\gamma \delta=4$
so γ and δ are the roots of the quadratic equation

$$
x^{2}-3(1-\sqrt{10}) x+4=0
$$

$\begin{array}{ll}\text { so } \gamma \text { satisfies } & \gamma^{2}-3(1-\sqrt{10}) \gamma+4=0 \\ \text { and } \delta \text { satisfies } & \delta^{2}-3(1-\sqrt{10}) \delta+4=0\end{array}$

