Topic assessment

1. Describe each of the following transformations.
(i) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
(ii) $\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \sqrt{3} \\ \frac{1}{2} \sqrt{3} & \frac{1}{2}\end{array}\right)$
(iii) $\quad\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
(iv) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$
2. Given that $\mathbf{A}=\left(\begin{array}{ccc}2 & 1 & 0 \\ -1 & 2 & -3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}1 & -1 \\ 2 & 3 \\ 4 & 0\end{array}\right)$, find $\mathbf{A B}$ and $\mathbf{B A}$.
3. The matrix $\left(\begin{array}{cc}-0.28 & 0.96 \\ -0.96 & -0.28\end{array}\right)$ corresponds to a rotation R in the $x-y$ plane.
(i) State the centre of the rotation R , and find the angle of rotation (stating whether it is clockwise or anticlockwise).
The transformation S is the rotation R followed by reflection in the x-axis.
(ii) Write down the matrix corresponding to reflection in the x-axis, and show that the matrix corresponding to the transformation S is $\left(\begin{array}{cc}-0.28 & 0.96 \\ 0.96 & 0.28\end{array}\right)$.
(iii) Show that the invariant points of the transformation S lie on a straight line, and find the equation of this line.
4. The matrix $\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)$ represents a transformation, T .
(i) Find the invariant points for the transformation T .
(ii) T is a transformation called a shear. The line of shear is the line of invariant points for the shear. The factor of a shear gives the distance a point is moved as a multiple of its perpendicular distance from the line of shear. What is the factor of the shear T?
5. The matrix $\left(\begin{array}{ll}3 & -2 \\ 4 & -6\end{array}\right)$ defines a transformation \mathbf{M} of the (x, y) plane.
(i) Show that the origin is the only invariant point of the transformation.
(ii) Find the two values of m for which $y=m x$ is an invariant line under the transformation.

Edexcel AS FM Matrices Assessment solutions

Solutions to topic assessment

1. (i) Reflection in the x-axis
(ii) Rotation through 60° anticlockwise about the origin
(iii) Reflection in the line $y=-x$
(iv) Rotation through 90° about the x-axis
2. $A B=\left(\begin{array}{ccc}2 & 1 & 0 \\ -1 & 2 & -3\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 2 & 3 \\ 4 & 0\end{array}\right)=\left(\begin{array}{cc}4 & 1 \\ -9 & 7\end{array}\right)$
$B A=\left(\begin{array}{cc}1 & -1 \\ 2 & 3 \\ 4 & 0\end{array}\right)\left(\begin{array}{ccc}2 & 1 & 0 \\ -1 & 2 & -3\end{array}\right)=\left(\begin{array}{ccc}3 & -1 & 3 \\ 1 & 8 & -9 \\ 8 & 4 & 0\end{array}\right)$
3. (i) The centre of rotation is the origin.
comparing with the general rotation matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ for an
anticlockwise rotation of θ about the origin gives

$$
\begin{aligned}
& \cos \theta=-0.28 \\
& \sin \theta=-0.96
\end{aligned}
$$

so θ is in the third quadrant, and therefore $\theta=-106.3^{\circ}$ (1 d.p.)
The angle of rotation is 106.3° clockwise.
(ii) For reflection in the x-axis, the point $(1,0)$ is mapped to itself, and the point $(0,1)$ is mapped to the point $(0,-1)$
so the matrix corresponding to reflection in the x-axis is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
$S=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}-0.28 & 0.96 \\ -0.96 & -0.28\end{array}\right)=\left(\begin{array}{cc}-0.28 & 0.96 \\ 0.96 & 0.28\end{array}\right)$

Edexcel AS FM Matrices Assessment solutions
(iii) For invariant points, $\left(\begin{array}{cc}-0.28 & 0.96 \\ 0.96 & 0.28\end{array}\right)\binom{x}{y}=\binom{x}{y}$

$$
\begin{aligned}
& \binom{-0.28 x+0.96 y}{0.96 x+0.28 y}=\binom{x}{y} \\
& \binom{-1.28 x+0.96 y}{0.96 x-0.72 y}=\binom{0}{0}
\end{aligned}
$$

Both these equations simplify to $4 x=3 y$
so the invariant points all satisfy the equation $4 x=3 y$, and so they all line on a straight line with equation $4 x=3 y$.
4. (i) $\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)\binom{x}{y}=\binom{x}{y}$
$\binom{3 x-2 y}{2 x-y}=\binom{x}{y}$
$\binom{2 x-2 y}{2 x-2 y}=\binom{0}{0}$
The invariant points are all points on the line $y=x$
(ii) consider the point $(1,0)$.

Under T the point $(1,0)$ is mapped to the point $(3,2)$, so the distance it moves is $\sqrt{2^{2}+2^{2}}=2 \sqrt{2}$.

The perpendicular distance of the point $(1,0)$ from the line of shear $y=x$ is given by $d=1 \times \sin 45^{\circ}=\frac{1}{\sqrt{2}}$.
Factor of shear $=\frac{2 \sqrt{2}}{1 / \sqrt{2}}=4$.

Edexcel AS FM Matrices Assessment solutions

5. (i) At invariant points, $\left(\begin{array}{ll}3 & -2 \\ 4 & -6\end{array}\right)\binom{x}{y}=\binom{x}{y}$

$$
\begin{aligned}
& \binom{3 x-2 y}{4 x-6 y}=\binom{x}{y} \\
& \binom{2 x-2 y}{4 x-7 y}=0
\end{aligned}
$$

This can only be true if $x=y=0$, so the origin is the only invariant point.
(ii) For a point on the line $y=m x$, image is $\left(\begin{array}{cc}3 & -2 \\ 4 & -6\end{array}\right)\binom{x}{m x}=\binom{3 x-2 m x}{4 x-6 m x}$

For an invariant line, the image point must lie on the line

$$
\begin{aligned}
& \text { so } 4 x-6 m x=m(3 x-2 m x) \\
& 4-6 m=3 m-2 m^{2} \\
& 2 m^{2}-9 m+4=0 \\
& (2 m-1)(m-4)=0 \\
& m=\frac{1}{2} \text { or } m=4
\end{aligned}
$$

