Topic assessment

1. The matrix $\left(\begin{array}{ll}3 & -2 \\ 4 & -6\end{array}\right)$ defines a transformation \mathbf{M} of the (x, y) plane.

A triangle S has area 3 square units, and \mathbf{M} transforms S to a triangle T.
(i) Find the area of T.
(ii) Find the matrix which transforms T to S.
(iii) Find the point which is mapped to the point $(9,2)$
2. The matrix $\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & -1 & k \\ 1 & 0 & 1\end{array}\right)$ maps the unit cube to a solid with volume $4 \mathrm{~cm}^{3}$.
(i) Find the two possible values of k.
(ii) In the case for which the orientation of the image is unchanged from the orientation of the original cube, find the coordinates of the point P which is mapped to the point $(0,1,2)$.
3. The matrix $\mathbf{M}=\left(\begin{array}{cc}2 & -3 \\ a & 6\end{array}\right)$ is singular.
(i) Find the value of a.
(ii) Show that \mathbf{M} maps every point on the plane to a point on a straight line, and find the equation of this line.
4. (i) Find the determinant of the matrix $\mathbf{M}=\left(\begin{array}{ccc}k & 2 & 3 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right)$ in terms of k.
(ii) State the value of k for which \mathbf{M} is singular.
(iii) Given that \mathbf{M} is non-singular, find \mathbf{M}^{-1}.
5. You are given the matrix equation $\left(\begin{array}{ccc}3 & -2 & -18 \\ 2 & 1 & -5 \\ 7 & k & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}6 \\ 25 \\ 20\end{array}\right)$.
(i) Solve the equation when $k=-32$.
(ii) Show that if $k=10$ the equation does not have a unique solution.

Determine whether there is no solution or whether there are infinitely many solutions. Give a geometrical interpretation.
6. Show that the equation $\left(\begin{array}{ccc}3 & -7 & 0 \\ 2 & 2 & 5 \\ 1 & 3 & 4\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ does not have a unique solution, and give a geometrical interpretation.

Edexcel AS FM Inverse matrices Assessment solns

7. For the equations

$$
\begin{aligned}
& 3 x-3 y-z=a \\
& 2 x-y-z=5 \\
& x+k y-2 z=7
\end{aligned}
$$

(i) Show that the equations do not have a unique solution if $k=4$.
(ii) Solve the equations for the case $k=2$ and $a=8$.
(iii) In the case $k=4$, find the value of a for which the equations are consistent.

Edexcel AS FM Inverse matrices Assessment solns

Solutions to topic assessment

1. (i) $\operatorname{det}\left(\begin{array}{ll}3 & -2 \\ 4 & -6\end{array}\right)=(3 \times-6)-(4 \times-2)=-18+8=-10$

Area scale factor $=10$, so area of $T=3 \times 10=30$ square units.
(ii) Inverse matrix $=\frac{1}{-10}\left(\begin{array}{ll}-6 & 2 \\ -4 & 3\end{array}\right)=\left(\begin{array}{cc}0.6 & -0.2 \\ 0.4 & -0.3\end{array}\right)$
(iii) $\left(\begin{array}{ll}0.6 & -0.2 \\ 0.4 & -0.3\end{array}\right)\binom{9}{2}=\binom{5}{3}$
so the point mapped to $(9,2)$ is $(5,3)$.
2. (i) $\left|\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & -1 & k \\ 1 & 0 & 1\end{array}\right)\right|=1(-1-0)-2(3-k)+3(0+1)$

$$
\begin{aligned}
& =-1-6+2 k+3 \\
& =2 k-4
\end{aligned}
$$

Since the volume factor is 4 , the determinant is 4 or -4 .
$2 k-4=4$
$2 k=8$
$2 k-4=-4$
$k=4$
$2 k=0$
$k=0$ or 4
$k=0$
eo 4
(ii) If the orientation is unchanged, the determinant is positive so this is the case for which $k=4$.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & -1 & k \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) \\
& \text { Inverse matrix }=\frac{1}{4}\left(\begin{array}{ccc}
-1 & -2 & 11 \\
1 & -2 & 5 \\
1 & 2 & -7
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{4}\left(\begin{array}{ccc}
-1 & -2 & 11 \\
1 & -2 & 5 \\
1 & 2 & -7
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}
20 \\
8 \\
-12
\end{array}\right)=\left(\begin{array}{c}
5 \\
2 \\
-3
\end{array}\right) \\
& \text { SOP }=(5,2,-3) .
\end{aligned}
$$

3. (i) Determinant is zero, so $12+3 a=0$
(ii) $\left(\begin{array}{cc}2 & -3 \\ -4 & 6\end{array}\right)\binom{p}{q}=\binom{2 p-3 q}{-4 p+6 q}=\binom{2 p-3 q}{-2(2 p-3 q)}$

So every point is mapped to a point on the line $y=-2 x$.
4. (i) $\left|\left(\begin{array}{ccc}k & 2 & 3 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right)\right|=k(-2+1)-2(-3+2)+3(3-4)$

$$
\begin{aligned}
& =-k+2-3 \\
& =-k-1
\end{aligned}
$$

(ii) $k=-1$
(iii) Matrix of cofactors $=\left(\begin{array}{ccc}-1 & 1 & -1 \\ 5 & -k-6 & -k+4 \\ -8 & k+9 & 2 k-6\end{array}\right)$ Inverse matrix $=\frac{1}{-k-1}\left(\begin{array}{ccc}-1 & 5 & -8 \\ 1 & -k-6 & k+9 \\ -1 & -k+4 & 2 k-6\end{array}\right)$

$$
=\frac{1}{k+1}\left(\begin{array}{ccc}
1 & -5 & 8 \\
-1 & k+6 & -k-9 \\
1 & k-4 & 6-2 k
\end{array}\right)
$$

5. (i) When $k=-32$, inverse matrix $=\frac{1}{882}\left(\begin{array}{ccc}-158 & 580 & 28 \\ -39 & 132 & -21 \\ -71 & 82 & 7\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{882}\left(\begin{array}{ccc}
-158 & 580 & 28 \\
-39 & 132 & -21 \\
-71 & 82 & 7
\end{array}\right)\left(\begin{array}{c}
6 \\
25 \\
20
\end{array}\right) \\
& \\
& =\frac{1}{882}\left(\begin{array}{c}
14112 \\
2646 \\
1764
\end{array}\right)=\left(\begin{array}{c}
16 \\
3 \\
2
\end{array}\right) \\
& x=16, y=3, z=2
\end{aligned}
$$

Edexcel AS FM Inverse matrices Assessment solns

(ii) $\left(\begin{array}{ccc}3 & -2 & -18 \\ 2 & 1 & -5 \\ 7 & 10 & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}6 \\ 25 \\ 20\end{array}\right)$
$3 x-2 y-18 z=6$
(1)
$\Rightarrow 2 x+y-5 z=25$
$7 x+10 y+2 z=20$
(1) $+2 x(2) \Rightarrow 7 x-28 z=56 \quad \Rightarrow x-4 z=8$
$5 x(1)+(3) \Rightarrow 22 x-88 z=50 \quad \Rightarrow x-4 z=\frac{50}{22}$
so the equations are inconsistent, and there is no solution.
The equations represent three planes which form a triangular prism.
6. $\begin{aligned} & 3 x-7 y=3 \\ & 2 x+2 y+5 z=2 \\ & x+3 y+4 z=1 \\ & \quad 4 \times(2)-5 \times(3) \Rightarrow 3 x-7 y=3\end{aligned}$
comparing with (1), the equations are consistent and there are infinitely many solutions.

The equations represent a sheaf of planes.
7. $\left(\begin{array}{ccc}3 & -3 & -1 \\ 2 & -1 & -1 \\ 1 & k & -2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}a \\ 5 \\ 7\end{array}\right)$
(i) If $k=4$ the determinant is zero so the equations do not have a unique solution.
(ii) $\left(\begin{array}{ccc}3 & -3 & -1 \\ 2 & -1 & -1 \\ 1 & 2 & -2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}8 \\ 5 \\ 7\end{array}\right)$

Ifk $=2$, determinant $=-2$.

$$
\text { Inverse matrix }=-\frac{1}{2}\left(\begin{array}{lll}
4 & -8 & 2 \\
3 & -5 & 1 \\
5 & -9 & 3
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\frac{1}{2}\left(\begin{array}{lll}
4 & -8 & 2 \\
3 & -5 & 1 \\
5 & -9 & 3
\end{array}\right)\left(\begin{array}{l}
8 \\
5 \\
7
\end{array}\right)
$$

$$
=-\frac{1}{2}\left(\begin{array}{c}
6 \\
6 \\
16
\end{array}\right)=\left(\begin{array}{l}
-3 \\
-3 \\
-8
\end{array}\right)
$$

Edexcel AS FM Inverse matrices Assessment solns

The solution is $x=-3, y=-3, z=-8$.
(iii) $3 x-3 y-z=a$
(1)
$2 x-y-z=5$
$x+4 y-2 z=7$
(1)-(2): $\quad x-2 y=a-5$
$2 \times(2)-(3): \quad 3 x-6 y=3 \Rightarrow x-2 y=1$
The equations are consistent if $a-5=1 \Rightarrow a=6$

