Edexcel AS Further Maths Complex numbers

Topic Assessment

1. (a) Solve the equation $z^{2}+2 z+10=0$.

Find the modulus and argument of each root.
(b) Complex numbers α and β are given by

$$
\alpha=2\left(\cos \frac{\pi}{8}+\mathrm{i} \sin \frac{\pi}{8}\right), \quad \beta=4 \sqrt{2}\left(\cos \frac{5 \pi}{8}+\mathrm{i} \sin \frac{5 \pi}{8}\right)
$$

(i) Write down the modulus and argument of each of the complex numbers α and β.
Illustrate these two complex numbers on an Argand diagram.
(ii) Indicate a length on your diagram which is equal to $|\beta-\alpha|$, and show that $|\beta-\alpha|=6$.
(iii) On your diagram, draw and label
(A) the locus L of points representing complex numbers z such that

$$
\begin{equation*}
|z-\alpha|=6, \tag{3}
\end{equation*}
$$

(B) the locus M of points representing complex numbers z such that

$$
\begin{equation*}
\arg (z-\alpha)=\frac{5 \pi}{8} \tag{3}
\end{equation*}
$$

2. The cubic equation $z^{3}+z^{2}+4 z-48=0$ has one real root α and two complex roots β and γ.
(i) Verify that $\alpha=3$ and find β and γ in the form $a+b$ i. Take β to be the root with positive imaginary part, and give your answers in an exact form.
(ii) Find the modulus and argument of each of the numbers α, β, γ, giving the arguments in radians between $-\pi$ and π.
Illustrate the three numbers on an Argand diagram.
(iii)On your Argand diagram, draw the locus of points representing complex numbers z such that

$$
\begin{equation*}
\arg (z-\alpha)=\arg \beta \tag{2}
\end{equation*}
$$

3. You are given that the complex number $\alpha=1+4 \mathrm{i}$ satisfies the cubic equation

$$
\begin{equation*}
z^{3}+5 z^{2}+k z+m=0 \tag{3}
\end{equation*}
$$

where k and m are real constants.
(i) Find α^{2} and α^{3} in the form $a+b$ i.
(ii) Find the value of k, and show that $m=119$.
(iii)Find the other two roots of the cubic equation. Give the arguments of all three roots.
(iv)Verify that there is a constant c such that all three roots of the cubic equation satisfy

$$
|z+2|=c .
$$

Draw an Argand diagram showing the locus of points representing all complex numbers z for which $|z+2|=c$. Mark the points corresponding to the three roots of the cubic equation.

MEI AS FM Complex numbers Assessment solutions

4. (i) Describe in words the locus L_{1} of points representing complex numbers w which satisfy

$$
\begin{equation*}
|w-9 \mathrm{i}|=|w-12| . \tag{5}
\end{equation*}
$$

Draw a diagram showing L_{1}.
The locus L_{2} consists of the points representing complex numbers z for which $|z-9 i|=2|z-12|$.
(ii) By writing $z=x+y$ i, where x and y are real, obtain an equation relating x and y, and hence show that L_{2} is a circle. Give the centre and radius of this circle.
(iii) Hence write down an equation for L_{2} in which z occurs only once.

MEI AS FM Complex numbers Assessment solutions

Solutions to Topic Assessment

1. (a) $z^{2}+2 z+10=0$
using the quadratic formula, $z=\frac{-2 \pm \sqrt{2^{2}-4 \times 1 \times 10}}{2}$

$$
\begin{aligned}
& =\frac{-2 \pm \sqrt{-36}}{2} \\
& =\frac{-2 \pm 6 i}{2} \\
& =-1 \pm 3 i
\end{aligned}
$$

$|-1+3 i|=\sqrt{1^{2}+3^{2}}=\sqrt{10}$
$(-1+3 i)$ is in the second quadrant,
so $\arg (-1+3 i)=\arctan \left(\frac{3}{-1}\right)+\pi=1.89$ (3 s.f.)
$|-1-3 i|=\sqrt{10}$
$\arg (-1-3 i)=-1.89$
(b) (i) $\quad \alpha=2\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right)$

$$
|\alpha|=2
$$

$\arg \alpha=\frac{\pi}{8}$
$\beta=4 \sqrt{2}\left(\cos \frac{5 \pi}{8}+i \sin \frac{5 \pi}{8}\right)$
$|\beta|=4 \sqrt{2}$
$\arg \beta=\frac{5 \pi}{8}$
(ii) The triangle is a right-angled triangle,

$$
\text { so } \begin{aligned}
|\beta-\alpha|^{2} & =2^{2}+(4 \sqrt{2})^{2} \\
& =4+32 \\
& =36 \\
|\beta-\alpha| & =6
\end{aligned}
$$

MEI AS FM Complex numbers Assessment solutions

(iii)

2. (i) $f(z)=z^{3}+z^{2}+4 z-48$
$f(3)=3^{3}+3^{2}+4 \times 3-48$

$$
=27+9+12-48
$$

$$
=0
$$

3 is a root, so the real root $\alpha=3$.
$z^{3}+z^{2}+4 z-48=0$
$(z-3)\left(z^{2}+4 z+16\right)=0$
The complex roots are the roots of the quadratic equation

$$
\begin{aligned}
z^{2} & +4 z+16=0 . \\
z & =\frac{-4 \pm \sqrt{4^{2}-4 \times 1 \times 16}}{2} \\
& =\frac{-4 \pm \sqrt{-48}}{2} \\
& =\frac{-4 \pm 4 i \sqrt{3}}{2} \\
& =-2 \pm 2 i \sqrt{3}
\end{aligned}
$$

The complex roots are $\beta=-2+2 i \sqrt{3}, \gamma=-2-2 i \sqrt{3}$.
(ii) $|\alpha|=3$
$\arg \alpha=0$
$|\beta|=\sqrt{2^{2}+(2 \sqrt{3})^{2}}=\sqrt{4+12}=4$
β is in the second quadrant, so $\arg \beta=\pi+\arctan \left(\frac{2 \sqrt{3}}{-2}\right)$

$$
\begin{aligned}
& =\pi+\arctan (-\sqrt{3}) \\
& =\pi-\frac{\pi}{3} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

$$
|\gamma|=\sqrt{2^{2}+(2 \sqrt{3})^{2}}=\sqrt{4+12}=4
$$

γ is in the third quadrant, so $\arg \gamma=\arctan \left(\frac{-2 \sqrt{3}}{-2}\right)-\pi$

$$
\begin{aligned}
& =\arctan (\sqrt{3})-\pi \\
& =\frac{\pi}{3}-\pi \\
& =-\frac{2 \pi}{3}
\end{aligned}
$$

$\arg (z-3)=\frac{2 \pi}{3}$
The locus is the half-line starting from $z=3$ in the direction $\frac{2 \pi}{3}$ (shown on Argand diagram above).
3. (i) $\alpha=1+4 i$

$$
\begin{aligned}
& \alpha^{2}=(1+4 i)(1+4 i)=1+8 i-16=-15+8 i \\
& \alpha^{3}=(-15+8 i)(1+4 i)=-15-52 i-32=-47-52 i
\end{aligned}
$$

(ii) $\alpha^{3}+5 \alpha^{2}+k \alpha+m=0$
$-47-52 i+5(-15+8 i)+k(1+4 i)+m=0$
Equating imaginary parts:

$$
-52+40+4 k=0
$$

$$
\Rightarrow k=3
$$

Equating real parts:

$$
-47-75+k+m=0
$$

$$
\Rightarrow m=122-k=119
$$

(iii) $\alpha=1+4 i$ is a root, so $\alpha^{*}=1-4 i$ is another root.

A quadratic factor is $(z-1-4 i)(z-1+4 i)=(z-1)^{2}+16$

$$
\begin{aligned}
& =z^{2}-2 z+1+16 \\
& =z^{2}-2 z+17
\end{aligned}
$$

$z^{3}+5 z^{2}+3 z+119=0$
$\left(z^{2}-2 z+17\right)(z+7)=0$
The third root is $z=-7$.
$\arg \alpha=\arctan \left(\frac{4}{1}\right)=1.33$ (3 s.f.)
By symmetry $\arg \alpha^{*}=-1.33$ (3 s.f.)
$\arg (-7)=\pi$.
(iv) $|\alpha+2|=|1+4 i+2|=|3+4 i|=\sqrt{3^{2}+4^{2}}=5$
$\left|\alpha^{*}+2\right|=|1-4 i+2|=|3-4 i|=\sqrt{3^{2}+4^{2}}=5$
$|-7+2|=|-5|=5$
so all three roots satisfy $|z+2|=5$.

[6]

MEI AS FM Complex numbers Assessment solutions

4. (i) L_{1} is the perpendicular bisector of a line joining the points $z=12$ and $z=g i$ on the Argand diagram.

(ii) $|z-9 i|=2|z-12|$

$$
\begin{aligned}
& |x+i y-9 i|=2|x+i y-12| \\
& \sqrt{x^{2}+(y-9)^{2}}=2 \sqrt{(x-12)^{2}+y^{2}} \\
& x^{2}+(y-9)^{2}=4\left((x-12)^{2}+y^{2}\right) \\
& x^{2}+y^{2}-18 y+81=4 x^{2}-96 x+576+4 y^{2} \\
& 3 x^{2}-96 x+3 y^{2}+18 y+495=0 \\
& x^{2}-32 x+y^{2}+6 y+165=0 \\
& (x-16)^{2}-256+(y+3)^{2}-9+165=0 \\
& (x-16)^{2}+(y+3)^{2}=100
\end{aligned}
$$

This is a circle, centre $(16,-3)$, radius 10 .
(iii) $|z-16+3 i|=10$

