Edexcel AS Further Mathematics Matrices

Section 3: Invariance
Notes and Examples
These notes contain subsections on

- Invariant points
- Invariant lines

Invariant points

An invariant point for a transformation is a point which is mapped to itself by the transformation.

For all linear transformations, either the origin is the only invariant point, or all the invariant points lie on a straight line through the origin.

All you need to do to find the invariant points for the transformation with matrix $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is to write the matrix equation

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{x}{y}=\binom{x}{y}
$$

write down two equations from this matrix equation

$$
\begin{aligned}
& a x+c y=x \\
& b x+d y=y
\end{aligned}
$$

and decide whether or not these two equations are equivalent to each other. If they are, then they represent a line of invariant points, and all points on the line can be represented in terms of a parameter. If they are not equivalent, then the only invariant point is the origin.

Finding the invariant points of a transformation can give you useful information about the transformation. For example, if you know that the transformation is a reflection, then finding the line of invariant points gives you the equation of the mirror line.

Invariant lines

An invariant line for a transformation is a line which is mapped to itself by the transformation. It is important to understand the difference between a line of invariant points and an invariant line. On a line of invariant points, all points are mapped to themselves. However, on an invariant line, all points are mapped to a point on the line, so that the line is mapped to itself, but the individual points are not necessarily mapped to themselves.

Notice that a line of invariant points is an invariant line, but an invariant line is not necessarily a line of invariant points!

Edexcel AS FM Matrices 3 Notes and Examples

An invariant line can be found by finding the image of a general point on the line y $=m x+c$:

$$
\mathbf{M}\binom{x}{m x+c}
$$

The image must itself satisfy the equation $y=m x+c$. This allows you to find the values of m and c, as shown in the example below.

Example 1

Find the line of invariant points and invariant lines of the matrix $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)$.

Solution

Invariant points satisfy the equation $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)\binom{x}{y}=\binom{x}{y}$.

$$
\begin{aligned}
& 2 x+y=x \\
& 2 x+3 y=y
\end{aligned} \quad \Rightarrow \begin{aligned}
& x+y=0 \\
& 2 x+2 y=
\end{aligned}
$$

All points satisfying $x+y=0$ are invariant points.
So the line $y=-x$ is a line of invariant points.
Let the invariant lines be $y=m x+c$, so a point on the invariant line is $(x, m x+c)$.
The image of this point is $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)\binom{x}{m x+c}$, which is $\binom{2 x+m x+c}{2 x+3 m x+3 c}$.
This image point must lie on the line $y=m x+c$, so

$$
\begin{aligned}
& 2 x+3 m x+3 c=m(2 x+m x+c)+c \\
& 2 x+3 m x+3 c=2 m x+m^{2} x+m c+c \\
& m^{2} x-m x-2 x+m c-2 c=0 \\
& \left(m^{2}-m-2\right) x+c(m-2)=0 \\
& (m-2)(m+1) x+c(m-2)=0
\end{aligned}
$$

This needs to be true for all values of x, so $m=2$ or $m=-1$.
If $m=2$, then the constant term $c(m-2)$ is also zero, so c can take any value.
Therefore all lines of the form $y=2 x+c$ are invariant lines.
If $m=-1$, then c must be zero to make the constant term $c(m-2)$ zero.
Therefore $y=-x$ is an invariant line - this is the line of invariant points found above.

