Edexcel AS Mathematics Variable acceleration

Topic assessment

1. A particle moves on the x-axis. Its displacement, $x \mathrm{~m}$, from the origin O is given by

$$
x=3 t^{2}-3 t+2 \text {, where } \mathrm{t} \text { is the time in seconds. }
$$

How far is the particle from O when it is instantaneously at rest?
2. A racing car starts off down a straight section of track towards the first corner. Its speed, $v \mathrm{~ms}^{-1}$, is modelled for the first four seconds of its motion by

$$
v=t^{3}-9 t^{2}+24 t, \quad 0 \leq t \leq 4 .
$$

(i) Find an expression for the distance travelled by the car in the first t seconds.

Calculate the distance travelled from $t=2$ to $t=4$.
(ii) Show that the acceleration, $a \mathrm{~ms}^{-2}$, of the car at time t is given by $a=k(t-2)(t-4)$, where k is a constant to be determined.
3. The velocity, v, of a particle is given as

$$
v=2 t^{2}-3 t-\frac{1}{3} t^{3} .
$$

(i) Show that the acceleration of the particle is zero when $t=1$ and when $t=3$.
(ii) Calculate the displacement of the particle from its position when $t=1$ to its position when $t=2$.
4. A car starts from rest and travels along a straight road. Its speed, $v \mathrm{~ms}^{-1}$, at time t seconds is modelled by

$$
\begin{array}{ll}
v=4 t-0.2 t^{2}, & 0 \leq t \leq 10, \\
v=\text { constant, } & 10 \leq t \leq 15, \\
v=8+0.8 t, & t \geq 15 . \tag{3}
\end{array}
$$

(i) Calculate the speed of the car at $t=0, t=10, t=15$ and $t=20$.
(ii) Find the values of the acceleration at
(A) $t=7$,
(B) $t=12$,
(C) $t=16$.
(iii) Calculate the distance the car travels in the interval $10 \leq t \leq 20$.
(iv) Calculate the distance the car travels in the interval $0 \leq t \leq 10$.

Edexcel AS Maths Variable acceleration Assessment solutions

5. An insect moves in a straight line. The time, t, is in seconds and distance travelled is in metres.

The velocity, $v \mathrm{~ms}^{-1}$, of the insect is given by

$$
\begin{array}{ll}
v=t^{2}-4 t, & 0 \leq t \leq 6, \\
v=c, & 6 \leq t \leq 10, \\
v=a t+b, & 10 \leq t \leq 15 .
\end{array}
$$

You are also given that $v=4$ when $t=12$.
(i) Show that $c=12$.
(ii) Calculate the values of a and b and briefly describe the motion of the insect in the interval $10 \leq t \leq 15$.
(iii) Calculate the values of v for $t=0, t=2$ and $t=4$. Sketch the $v-t$ curve for the motion of the insect in the interval $0 \leq t \leq 6$.
(iv) Calculate the distance travelled by the insect in the interval $0 \leq t \leq 6$.

Edexcel AS Maths Variable acceleration Assessment solutions

Solutions to topic assessment

1. $x=3 t^{2}-3 t+2$
$v=\frac{d x}{d t}=6 t-3$
When particle is instantaneously at rest, $6 t-3=0$

$$
t=0.5
$$

Whent $=0.5, x=3 \times 0.5^{2}-3 \times 0.5+2$

$$
=1.25
$$

it is 1.25 m from 0 when it is instantaneously at rest.
2. (i) $v=t^{3}-9 t^{2}+24 t$

$$
\begin{aligned}
& s=\int v d t=\frac{1}{4} t^{4}-3 t^{3}+12 t^{2}+c \\
& \text { When } t=0, s=0 \Rightarrow c=0 \\
& s=\frac{1}{4} t^{4}-3 t^{3}+12 t^{2}
\end{aligned}
$$

Distance travelled from $t=2$ to $t=4$ is

$$
\begin{aligned}
& \left(\frac{1}{4} \times 4^{4}-3 \times 4^{3}+12 \times 4^{2}\right)-\left(\frac{1}{4} \times 2^{4}-3 \times 2^{3}+12 \times 2^{2}\right) \\
& =64-192+192-4+24-48=36
\end{aligned}
$$

Distance travelled $=36 \mathrm{~m}$.
(ii) $a=\frac{d v}{d t}=3 t^{2}-18 t+24=3\left(t^{2}-6 t+8\right)=3(t-2)(t-4)$ sok $=3$.
3. (i) $v=2 t^{2}-3 t-\frac{1}{3} t^{3}$
$a=\frac{d v}{d t}=4 t-3-t^{2}$
When $a=0, t^{2}-4 t+3=0$

$$
\begin{aligned}
& (t-1)(t-3)=0 \\
& t=1 \text { or } t=3
\end{aligned}
$$

(ii) Displacement $=\int_{1}^{2} v d t$

$$
\begin{aligned}
& =\left[\frac{2}{3} t^{3}-\frac{3}{2} t^{2}-\frac{1}{12} t^{4}\right]_{1}^{2} \\
& =\left(\frac{16}{3}-6-\frac{4}{3}\right)-\left(\frac{2}{3}-\frac{3}{2}-\frac{1}{12}\right) \\
& =-\frac{13}{12}
\end{aligned}
$$

Edexcel AS Maths Variable acceleration Assessment solutions

4.

$v=4 t-0.2 t^{2}$,
$v=$ constant,
$v=8+0.8 t$,
$0 \leq v \leq 10$,
$10 \leq t \leq 15$,
$t \geq 15$.
(i) Whent $=0, v=4 \times 0-0.2 \times 0^{2}=0$

Whent $=10, v=4 \times 10-0.2 \times 10^{2}=20$
Whent $=15, v=8+0.8 \times 15=20$
Whent $=20, v=8+0.8 \times 20=24$
(ii) (A) Whent $=7, v=4 t-0.2 t^{2}$

$$
a=\frac{d v}{d t}=4-0.4 t
$$

Acceleration $=4-0.4 \times 7=1.2 \mathrm{~ms}^{-2}$
(B) Whent $=12, v=20$

$$
a=\frac{d v}{d t}=0
$$

Acceleration $=0$
(c) Whent $=16, v=8+0.8 t$

$$
a=\frac{d v}{d t}=0.8
$$

Acceleration $=0.8 \mathrm{~ms}^{-2}$.
(iii) in the interval $10 \leq t \leq 15$, speed is constant.

Distance travelled $=20 \times 5=100$
in the interval $15 \leq t \leq 20$, acceleration is constant.

$$
\begin{aligned}
& u=20 \\
& t=5 \\
& a=0.8 \\
& s=?
\end{aligned}
$$

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
=20 \times 5+\frac{1}{2} \times 0.8 \times 5^{2}
$$

$$
=110
$$

Total distance travelled in the interval $10 \leq t \leq 20=210 \mathrm{~m}$.
(iv) Distance travelled $=\int_{0}^{10} v d t$

$$
\begin{aligned}
& =\int_{0}^{10}\left(4 t-0.2 t^{2}\right) d t \\
& =\left[2 t^{2}-\frac{1}{15} t^{3}\right]_{0}^{10} \\
& =200-\frac{200}{3} \\
& =133 \frac{1}{3}
\end{aligned}
$$

Distance travelled in the interval $0 \leq t \leq 10=133 \frac{1}{3} \mathrm{~m}$.

Edexcel AS Maths Variable acceleration Assessment solutions

5. $v=t^{2}-4 t$,
$0 \leq t \leq 6$,
$v=c$,
$6 \leq t \leq 10$,
$v=a t+b$, $10 \leq t \leq 15$.
(i) Whent $=6, v=6^{2}-4 \times 6=12$ Therefore $c=12$.
(ii) Whent $=10, v=12 \Rightarrow 10 a+b=12$

Whent $=12, v=4 \Rightarrow 12 a+b=4$
Subtracting: $-2 a=8 \Rightarrow a=-4, b=52$
The insect is decelerating at a constant rate.
(iii) Whent $=0, v=0^{2}-4 \times 0=0$

Whent $=2, v=2^{2}-4 \times 2=-4$
Whent $=4, v=4^{2}-4 \times 4=0$

(iv) Displacement for $0 \leq t \leq 4=\int_{0}^{4} V d t=\left[\frac{1}{3} t^{3}-2 t^{2}\right]_{0}^{4}$

$$
=\frac{64}{3}-32=-\frac{32}{3}
$$

Displacement for $4 \leq t \leq 6=\int_{4}^{6} v d t=\left[\frac{1}{3} t^{3}-2 t^{2}\right]_{4}^{6}$

$$
=72-72-\frac{64}{3}+32=\frac{32}{3}
$$

Total distance travelled $=\frac{32}{3}+\frac{32}{3}=21 \frac{1}{3} \mathrm{~m}$.

