Edexcel AS Mathematics Variable acceleration

Topic assessment

1. A particle moves on the *x*-axis. Its displacement, *x* m, from the origin O is given by

$$x = 3t^2 - 3t + 2$$
, where t is the time in seconds.

How far is the particle from O when it is instantaneously at rest? [5]

2. A racing car starts off down a straight section of track towards the first corner. Its speed, $v \, \text{ms}^{-1}$, is modelled for the first four seconds of its motion by

$$v = t^3 - 9t^2 + 24t$$
, $0 \le t \le 4$.

(i) Find an expression for the distance travelled by the car in the first t seconds.

Calculate the distance travelled from
$$t = 2$$
 to $t = 4$. [5]

- (ii) Show that the acceleration, $a \text{ ms}^{-2}$, of the car at time t is given by a = k(t-2)(t-4), where k is a constant to be determined. [2]
- 3. The velocity, v, of a particle is given as

$$v = 2t^2 - 3t - \frac{1}{3}t^3$$
.

- (i) Show that the acceleration of the particle is zero when t = 1 and when t = 3.
- (ii) Calculate the displacement of the particle from its position when t = 1 to its position when t = 2. [4]
- 4. A car starts from rest and travels along a straight road. Its speed, $v \, \text{ms}^{-1}$, at time t seconds is modelled by

$$v = 4t - 0.2t^{2},$$
 $0 \le t \le 10,$
 $v = \text{constant},$ $10 \le t \le 15,$
 $v = 8 + 0.8t,$ $t \ge 15.$

- (i) Calculate the speed of the car at t = 0, t = 10, t = 15 and t = 20. [3]
- (ii) Find the values of the acceleration at

(A)
$$t = 7$$
,

(B)
$$t = 12$$
,

(C)
$$t = 16$$
.

- (iii) Calculate the distance the car travels in the interval $10 \le t \le 20$. [5]
- (iv) Calculate the distance the car travels in the interval $0 \le t \le 10$. [4]

5. An insect moves in a straight line. The time, *t*, is in seconds and distance travelled is in metres.

The velocity, $v \text{ ms}^{-1}$, of the insect is given by

$$v = t^{2} - 4t$$
, $0 \le t \le 6$,
 $v = c$, $6 \le t \le 10$,
 $v = at + b$, $10 \le t \le 15$.

You are also given that v = 4 when t = 12.

- (i) Show that c = 12. [2]
- (ii) Calculate the values of a and b and briefly describe the motion of the insect in the interval $10 \le t \le 15$. [4]
- (iii) Calculate the values of v for t = 0, t = 2 and t = 4. Sketch the v-t curve for the motion of the insect in the interval $0 \le t \le 6$.
- (iv) Calculate the **distance** travelled by the insect in the interval $0 \le t \le 6$. [6]

Total 50 marks

Solutions to topic assessment

1.
$$x = 3t^2 - 3t + 2$$

$$v = \frac{dx}{dt} = 6t - 3$$

When particle is instantaneously at rest, 6t - 3 = 0

$$t = 0.5$$

When
$$t = 0.5$$
, $x = 3 \times 0.5^2 - 3 \times 0.5 + 2$

$$= 1.25$$

It is 1.25 m from 0 when it is instantaneously at rest.

[5]

2. (i)
$$v = t^3 - 9t^2 + 24t$$

$$S = \int V dt = \frac{1}{4}t^4 - 3t^3 + 12t^2 + c$$

When
$$t = 0$$
, $s = 0 \Rightarrow c = 0$

$$s = \frac{1}{4}t^4 - 3t^3 + 12t^2$$

Distance travelled from t = 2 to t = 4 is

$$\left(\frac{1}{4} \times 4^4 - 3 \times 4^3 + 12 \times 4^2 \right) - \left(\frac{1}{4} \times 2^4 - 3 \times 2^3 + 12 \times 2^2 \right)$$

$$= 64 - 192 + 192 - 4 + 24 - 48 = 36$$

Distance travelled = 36 m.

[5]

(ii)
$$a = \frac{dv}{dt} = 3t^2 - 18t + 24 = 3(t^2 - 6t + 8) = 3(t - 2)(t - 4)$$

so $k = 3$.

[27

3. (i)
$$V = 2t^2 - 3t - \frac{1}{3}t^3$$

$$a = \frac{dv}{dt} = 4t - 3 - t^2$$

When a = 0, $t^2 - 4t + 3 = 0$

$$(t-1)(t-3)=0$$

$$t=1$$
 or $t=3$

[3]

(ii) Displacement =
$$\int_{1}^{2} v dt$$

$$= \left[\frac{2}{3}t^3 - \frac{3}{2}t^2 - \frac{1}{12}t^4\right]_1^2$$
$$= \left(\frac{16}{3} - 6 - \frac{4}{3}\right) - \left(\frac{2}{3} - \frac{3}{2} - \frac{1}{12}\right)$$

 $=-\frac{13}{12}$

[4]

4.
$$v = 4t - 0.2t^2$$
, $0 \le v \le 10$, $v = \text{constant}$, $10 \le t \le 15$, $v = 8 + 0.8t$, $t \ge 15$.

(i) When
$$t = 0$$
, $v = 4 \times 0 - 0.2 \times 0^2 = 0$
When $t = 10$, $v = 4 \times 10 - 0.2 \times 10^2 = 20$
When $t = 15$, $v = 8 + 0.8 \times 15 = 20$
When $t = 20$, $v = 8 + 0.8 \times 20 = 24$

[3]

(ii) (A) When
$$t = \mathcal{F}$$
, $v = 4t - 0.2t^2$
$$a = \frac{dv}{dt} = 4 - 0.4t$$
 Acceleration = $4 - 0.4 \times \mathcal{F} = 1.2 \text{ ms}^{-2}$

(B) When
$$t = 12$$
, $v = 20$

$$a = \frac{dv}{dt} = 0$$

Acceleration = 0

(C) When
$$t = 16$$
, $v = 8 + 0.8t$

$$a = \frac{dv}{dt} = 0.8$$
Acceleration = 0.8 ms⁻².

[4]

(iii) In the interval
$$10 \le t \le 15$$
, speed is constant. Distance travelled $= 20 \times 5 = 100$ In the interval $15 \le t \le 20$, acceleration is constant.

$$u = 20$$
 $s = ut + \frac{1}{2}at^{2}$
 $t = 5$ $= 20 \times 5 + \frac{1}{2} \times 0.8 \times 5^{2}$
 $a = 0.8$ $= 110$
 $s = ?$

Total distance travelled in the interval $10 \le t \le 20 = 210 \text{ m}$.

[5]

(iv) Distance travelled
$$= \int_{o}^{10} v \, dt$$

$$= \int_{o}^{10} (4t - 0.2t^2) \, dt$$

$$= \left[2t^2 - \frac{1}{15}t^3 \right]_{o}^{10}$$

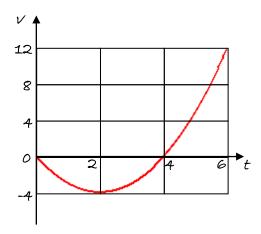
$$= 200 - \frac{200}{3}$$

$$= 133\frac{1}{3}$$

Distance travelled in the interval $0 \le t \le 10 = 133\frac{1}{3}$ m.

[4]

5.
$$v = t^2 - 4t$$
, $0 \le t \le 6$, $v = c$, $6 \le t \le 10$, $v = at + b$, $10 \le t \le 15$.


(i) When
$$t = 6$$
, $v = 6^2 - 4 \times 6 = 12$
Therefore $c = 12$.

[2]

(ii) When t = 10,
$$\vee$$
 = 12 \Rightarrow 10 a + b = 12
When t = 12, \vee = 4 \Rightarrow 12 a + b = 4
Subtracting: $-2a$ = 8 \Rightarrow a = -4 , b = 52
The insect is decelerating at a constant rate.

[4]

(iii) When
$$t = 0$$
, $v = 0^2 - 4 \times 0 = 0$
When $t = 2$, $v = 2^2 - 4 \times 2 = -4$
When $t = 4$, $v = 4^2 - 4 \times 4 = 0$

[3]

(iv) Displacement for
$$0 \le t \le 4 = \int_0^4 v \, dt = \left[\frac{1}{3}t^3 - 2t^2\right]_0^4$$

$$= \frac{64}{3} - 32 = -\frac{32}{3}$$
Displacement for $4 \le t \le 6 = \int_4^6 v \, dt = \left[\frac{1}{3}t^3 - 2t^2\right]_4^6$

$$= 72 - 72 - \frac{64}{3} + 32 = \frac{32}{3}$$
Total distance travelled $= \frac{32}{3} + \frac{32}{3} = 21\frac{1}{3}m$.

[6]