EdExcel AS Mathematics Vectors

Topic assessment

1. Given that $\mathbf{p}=\binom{1}{4}$ and $\mathbf{q}=\binom{3}{-1}$
(i) Find $2 \mathbf{p}+\mathbf{q}$.
(ii) Find a and b such that $a \mathbf{p}+b \mathbf{q}=\binom{1}{0}$.
2. The points A, B and C have coordinates $(2,-1),(3,2)$ and $(-4,0)$ respectively.
(i) Write down the vectors $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{BC}}$.
(ii) Find $|\overrightarrow{\mathrm{BC}}|$.
(iii) Find a unit vector in the direction of $\overrightarrow{\mathrm{AB}}$.
3. The points P, Q and R have coordinates $(1,4),(2,1)$ and $(-2,3)$ respectively.
(i) The point S is such that $\overrightarrow{\mathrm{SR}}=\overrightarrow{\mathrm{PQ}}$. Find the coordinates of S .
(ii) What shape is quadrilateral PQRS ?
(iii) M is the midpoint of PR . Find the vector $\overrightarrow{\mathrm{QM}}$.
4. Three forces $\mathbf{F}_{1}=2 \mathbf{i}+3 \mathbf{j} \mathbf{N}, \mathbf{F}_{2}=5 \mathbf{i}-\mathbf{j} \mathbf{N}$ and $\mathbf{F}_{3}=3 \mathbf{i}+a \mathbf{j} \mathrm{~N}$, act on a box.

The resultant force acts in the direction $2 \mathbf{i}+\mathbf{j}$.
Find the value of a and the magnitude of the resultant force.

Total 25 marks

Solutions to topic assessment

1. (i) $2\binom{1}{4}+\binom{3}{-1}=\binom{2}{8}+\binom{3}{-1}=\binom{5}{7}$
(ii) $a\binom{1}{4}+b\binom{3}{-1}=\binom{1}{0} \Rightarrow \begin{array}{r}a+3 b=1 \\ 4 a-b=0\end{array}$
$b=4 a$
$a+12 a=1$
$a=\frac{1}{13}, b=\frac{4}{13}$
2. (i) $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\binom{3}{2}-\binom{2}{-1}=\binom{1}{3}$
$\overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=\binom{-4}{0}-\binom{2}{-1}=\binom{-6}{1}$
$\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=\binom{-4}{0}-\binom{3}{2}=\binom{-7}{-2}$
(ii) $|\overline{B C}|=\sqrt{(-7)^{2}+(-2)^{2}}=\sqrt{49+4}=\sqrt{53}$
(iii) $|\overrightarrow{A B}|=\sqrt{1^{2}+3^{2}}=\sqrt{10}$
unit vector is $\frac{1}{\sqrt{10}}\binom{1}{3}$
3. (i) $\overrightarrow{S R}=\overrightarrow{P Q}$
$\overrightarrow{O R}-\overrightarrow{O S}=\overrightarrow{O Q}-\overrightarrow{O P}$
$\binom{-2}{3}-\overrightarrow{O S}=\binom{2}{1}-\binom{1}{4}$
$\overrightarrow{O S}=\binom{-2}{3}-\binom{2}{1}+\binom{1}{4}=\binom{-3}{6}$
(ii) Parallelogram

EdExcel AS Maths Vectors Assessment solutions

(iii) M has coordinates $\left(\frac{1-2}{2}, \frac{4+3}{2}\right)=\left(-\frac{1}{2}, \frac{7}{2}\right)$

$$
\begin{aligned}
\overrightarrow{Q M} & =\overrightarrow{O M}-\overrightarrow{O Q} \\
& =\binom{-\frac{1}{2}}{\frac{7}{2}}-\binom{2}{1} \\
& =\binom{-\frac{5}{2}}{\frac{5}{2}}
\end{aligned}
$$

4. Resultant force $=10 \underline{i}+(2+a) \underline{j}$

Since resultant force acts in the direction of $2 \underline{i}+\underline{j}, 10=2(2+a)$

$$
\begin{aligned}
& 5=2+a \\
& a=3
\end{aligned}
$$

Resultant force $=10 \underline{i}+5 \underline{j}$
Magnitude of force $=\sqrt{10^{2}+5^{2}}=\sqrt{125}=5 \sqrt{5} \mathrm{~N}$.
[5]

