
Edexcel AS Mathematics Trigonometry

Topic assessment

1. Find the angle θ and the length *x* in the triangle shown below.

[6]

[6]

- 2. Chang walks 5 km on a bearing of 140°, and then walks 3 km on a bearing of 025°.
 (i) How far is Chang from his starting point? [3]
 (ii) On what bearing should Chang walk to get back to his starting point? [4]
- 3. A triangular field has sides of length 100 m, 120 m and 150 m. Find the area of the field. [5]

4. Solve these equations for $0^\circ \le \theta \le 360^\circ$

- (i) $\cos\theta = 0.5$
 - (i) $\cos \theta = 0.5$ (ii) $\sin \theta = -0.5$
- (ii) $\sin \theta = -0$... (iii) $\tan \theta = 2$
- 5. Solve these equations for $0^\circ \le \theta \le 360^\circ$.

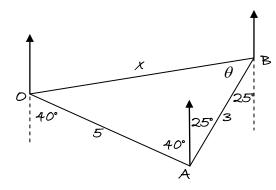
(i)
$$\cos^2 \theta = \frac{3}{4}$$

(ii) $3 \tan^2 \theta = 1$ [6]

- 6. Solve these equations for $0^\circ \le x \le 360^\circ$
- (i) $\sin 2x = -\frac{1}{2}\sqrt{3}$ (ii) $\cos \frac{1}{2}x = 0.3$ (iii) $\tan 3x = 0.5$ (9] 7. Solve these equations for $0^\circ \le \theta \le 360^\circ$
- (i) $\cos^2 \theta + \sin \theta = 1$ [4] (ii) $2\sin \theta \cos \theta + \sin \theta = 0$ [4] (iii) $\sqrt{3}\sin \theta = \cos \theta$ [3]

Total 50 marks

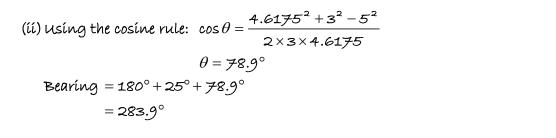
Topic assessment solutions

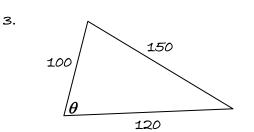

1. Using the sine rule:
$$\frac{\sin \theta}{12} = \frac{\sin 52^{\circ}}{15}$$
$$\sin \theta = \frac{12 \sin 52^{\circ}}{15}$$
$$\theta = 39.1 \text{ or } 140.9^{\circ}$$

The value of θ cannot be 149.0° as the total of the angles would be greater than 180°. So $\theta = 39.1^{\circ}$.

Angle A = 180° - 52° - 39.08° = 88.92°
Using the sine rule:
$$\frac{x}{\sin 88.92} = \frac{15}{\sin 52°}$$
$$x = \frac{15 \sin 88.92}{\sin 52°} = 19.0 \text{ cm}$$

[6]


2.



(i) Using the cosine rule: $\chi^2 = 5^2 + 3^2 - 2 \times 3 \times 5 \cos 65^\circ$ $\chi = 4.62 \text{ km}$

[3]

[4]

Using the cosine rule:
$$\cos \theta = \frac{100^2 + 120^2 - 150^2}{2 \times 100 \times 120}$$

 $\theta = 85.459^{\circ}$
Area = $\frac{1}{2} \times 100 \times 120 \sin 85.459^{\circ}$
= 5981 m² (4 s.f.) [5]
4. (i) $\cos \theta = 0.5$
Roots are in the 1st and 4th quadrants.
 $\theta = 60^{\circ}$ 300° [2]
(ii) $\sin \theta = -0.5$
Roots are in the 3st and 4th quadrants
 $\theta = 180^{\circ} + 30^{\circ} = 210^{\circ}$ or $\theta = 360^{\circ} - 30^{\circ} = 330^{\circ}$
 $\theta = 210^{\circ}$, 330° [2]
(iii) $\tan \theta = 2$
Roots are in 11° and $3^{\circ t}$ quadrants.
 $\theta = 63.4^{\circ}$ or $\theta = 180^{\circ} + 63.4^{\circ} = 243.4^{\circ}$
 $\theta = 63.4^{\circ}$ or $\theta = 360^{\circ} - 30^{\circ} = 330^{\circ}$
 $\theta = 63.4^{\circ}$, 243.4° [2]
5. (i) $\cos^2 \theta = \frac{3}{4}$
 $\cos \theta = \pm \frac{\sqrt{3}}{2}$
 $\cos \theta = \pm \frac{\sqrt{3}}{2}$ has roots in the 1st and 4th quadrants
 $\theta = 50^{\circ}$ or $\theta = 360^{\circ} - 30^{\circ} = 330^{\circ}$
 $\cos \theta = -\frac{\sqrt{3}}{2}$ has roots in the 2nd and 4th quadrants
 $\theta = 150^{\circ} - 30^{\circ} = 150^{\circ}$ or $\theta = 180^{\circ} + 30^{\circ} = 210^{\circ}$
 $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$ [3]
(ii) $3\tan^2 \theta = 1$
 $\tan^2 \theta = \frac{1}{3}$

$$\tan \theta = \pm \frac{1}{\sqrt{3}}$$

 $\tan \theta = \frac{1}{\sqrt{3}}$ has roots in the 1st and 3rd quadrants
 $\theta = 30^{\circ}$ or $\theta = 180^{\circ} + 30^{\circ} = 210^{\circ}$

$$\tan \theta = -\frac{1}{\sqrt{3}} \text{ has roots in the 2^{nd} and 4^{th} quadrants}$$

$$\theta = 180^{\circ} - 30^{\circ} = 150^{\circ} \text{ or } \theta = 360^{\circ} - 30^{\circ} = 330^{\circ}$$

$$\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$$
[3]
6. (i) $\sin 2x = -\frac{1}{2}\sqrt{3}$
Roots for 2x are in the 3rd and 4th quadrants.
 $2x = 180^{\circ} + 60^{\circ} = 240^{\circ} \text{ or } 2x = 360^{\circ} - 60^{\circ} = 300^{\circ}$
 $\text{or } 2x = 360^{\circ} + 240^{\circ} = 600^{\circ} \text{ or } 2x = 360^{\circ} + 300^{\circ} = 660^{\circ}$
 $x = 120^{\circ}, 150^{\circ}, 300^{\circ}, 330^{\circ}$
[3]
(ii) $\cos \frac{1}{2}x = 0.3$
Roots for $\frac{1}{2}x$ are in the 1st and 4th quadrants, but the one in the 4th
quadrant will give a value for x which is out of the range.
 $\frac{1}{2}x = 72.5^{\circ}$

(iii)
$$\tan 3x = 0.5$$

Roots for 3x are in the 1st and 3rd quadrants
 $3x = 26.6^{\circ}$ or $3x = 180^{\circ} + 26.6^{\circ} = 206.6^{\circ}$
or $3x = 360^{\circ} + 26.6^{\circ} = 386.6^{\circ}$ or $3x = 360^{\circ} + 206.6^{\circ} = 566.6^{\circ}$
or $3x = 360^{\circ} + 386.6^{\circ} = 746.6^{\circ}$ or $3x = 360^{\circ} + 566.6^{\circ} = 926.6^{\circ}$
 $x = 8.9^{\circ}$, 68.9° , 128.9° , 188.9° , 248.9° , 308.9°

$$\mathcal{F}$$
. (i) $\cos^2\theta + \sin\theta = \mathbf{1}$

x = 145°

$$(1 - \sin^{2} \theta) + \sin \theta = 1$$

$$\sin^{2} \theta - \sin \theta = 0$$

$$\sin \theta (\sin \theta - 1) = 0$$

$$\sin \theta = 0 \qquad \text{or} \qquad \sin \theta - 1 = 0$$

$$\theta = 0^{\circ}, 180^{\circ}, 360^{\circ} \qquad \sin \theta = 1$$

$$\theta = 90^{\circ}$$

$$\theta = 0^{\circ}, 90^{\circ}, 180^{\circ}, 360^{\circ}$$

(ii)
$$2\sin\theta\cos\theta + \sin\theta = 0$$

 $\sin\theta(2\cos\theta + 1) = 0$
 $\sin\theta = 0$ or $2\cos\theta + 1 = 0$
 $\theta = 0^{\circ}, 180^{\circ}, 360^{\circ}$ $\cos\theta = -\frac{1}{2}$
 $\theta = 120^{\circ}, 240^{\circ}$

 $\theta = 0^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 360^{\circ}$

[4]

[3]

[3]

(iii) $\sqrt{3} \sin \theta = \cos \theta$ $\sqrt{3} \tan \theta = 1$ $\tan \theta = \frac{1}{\sqrt{3}}$ $\theta = 30^{\circ}, 210^{\circ}$

[3]