Edexcel AS Mathematics Quadratic functions

Topic assessment

1. Solve each of the following quadratic equations, if possible, giving answers in exact form.
(i) $2 x^{2}-x-3=0$
(ii) $3 x^{2}-2 x+4=0$
(iii) $x^{2}+5 x-1=0$
2. (i) Write the quadratic expression $x^{2}+4 x+5$ in the form $A(x+B)^{2}+C$.
(ii) Find the discriminant of the quadratic equation $x^{2}+4 x+5=0$.
(iii) What does the value of this discriminant tell you about the roots of the equation $x^{2}+4 x+5=0$?
(iv) Sketch the graph of $y=x^{2}+4 x+5$, showing the coordinates of the turning point and any points where the curve crosses the coordinate axes.
3. (i) By factorising, solve the equation $2 x^{2}+x-6=0$.
(ii) Sketch the graph of $y=2 x^{2}+x-6$, showing the coordinates of any points where the graph cuts the coordinate axes.
4. The quadratic equation $2 x^{2}+5 x+k=0$ has equal roots.
(i) Find the value of k.
(ii) Solve the equation $2 x^{2}+5 x+k=0$.
5. (i) Write the expression $2 x^{2}+2 x-1$ in the form $a(x+p)^{2}+q$.
(ii) Hence, or otherwise, solve the equation $2 x^{2}+2 x-1=0$.
6. Sketch the graph of $y=12+4 x-x^{2}$, showing the coordinates of any points where the graph cuts the coordinate axes.
7. Solve these equations, giving your answers in exact form.
(i) $x^{\frac{2}{3}}+x^{\frac{1}{3}}-6=0$
(ii) $x^{4}+3 x^{2}-10=0$
8. The diagram shows a right-angled triangle. 3 Find the value of x, correct to 3 s.f.

9. Amy throws a ball so that when it is at its highest point, it passes through a hoop. The path of the ball is modelled by the equation $y=h+k x-\frac{1}{2} x^{2}$, where y is the height of the ball above the ground and x is the horizontal distance from the point at which the ball was thrown. The centre of the hoop is at the point where $x=2$ and $y=5$.
Find the values of h and k, and find the value of x at which the ball hits the ground.

Edexcel AS Maths Quadratics Assessment solutions

Solutions to topic assessment

1. (i) $2 x^{2}-x-3=0$
$a=2, b=-1, c=-3$
Discriminant $=b^{2}-4 a c=(-1)^{2}-4 \times 2 \times-3=1+24=25$
since the discriminant is a perfect square, the equation can be factorised.
$(2 x-3)(x+1)=0$
$x=\frac{3}{2}$ or $x=-1$
(ii) $3 x^{2}-2 x+4=0$
$a=3, b=-2, c=4$
Discriminant $=b^{2}-4 a c=(-2)^{2}-4 \times 3 \times 4=4-48=-44$
The discriminant is negative, so the equation has no real roots.
(iii) $x^{2}+5 x-1=0$
$a=1, b=5, c=-1$
Discriminant $=b^{2}-4 a c=5^{2}-4 \times 1 \times-1=25+4=29$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-5 \pm \sqrt{29}}{2 \times 1}=\frac{-5 \pm \sqrt{29}}{2}$
2. (i) $x^{2}+4 x+5=(x+2)^{2}-4+5$

$$
=(x+2)^{2}+1
$$

(ii) $x^{2}+4 x+5=0$
$a=1, b=4, c=5$
Discriminant $=b^{2}-4 a c=4^{2}-4 \times 1 \times 5=16-20=-4$
(iii) Since the discriminant is negative, there are no real solutions to to the equation $x^{2}+4 x+5=0$.
(iv) The graph of $y=x^{2}+4 x+5$ cuts the y-axis at $(0,5)$.
it does not cut the x-axis.
it has line of symmetry $x=-2$.

Edexcel AS Maths Quadratics Assessment solutions

3. (i) $2 x^{2}+x-6=0$
$(2 x-3)(x+2)=0$
$x=\frac{3}{2}$ or $x=-2$
(ii) The graph cuts the x-axis at $\left(\frac{3}{2}, 0\right)$ and $(-2,0)$, and cuts the y-axis at $(0,-6)$.

4. (i) $2 x^{2}+5 x+k=0$
$a=2, b=5, c=k$
If roots are equal, $b^{2}-4 a c=0$

$$
\begin{aligned}
& 5^{2}-4 \times 2 \times k=0 \\
& 8 k=25 \\
& k=\frac{25}{8}
\end{aligned}
$$

(ii) $2 x^{2}+5 x+\frac{25}{8}=0$
$16 x^{2}+40 x+25=0$
$(4 x+5)^{2}=0$
$x=-\frac{5}{4}$
5. (i) $2 x^{2}+2 x-1=2\left(x^{2}+x\right)-1$
$=2\left(\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}\right)-1$
$=2\left(x+\frac{1}{2}\right)^{2}-2 \times \frac{1}{4}-1$
$=2\left(x+\frac{1}{2}\right)^{2}-\frac{1}{2}-1$
$=2\left(x+\frac{1}{2}\right)^{2}-\frac{3}{2}$

Edexcel AS Maths Quadratics Assessment solutions

(ii) $2 x^{2}+2 x-1=0$
$2\left(x+\frac{1}{2}\right)^{2}-\frac{3}{2}=0$
$2\left(x+\frac{1}{2}\right)^{2}=\frac{3}{2}$
$\left(x+\frac{1}{2}\right)^{2}=\frac{3}{4}$
$x+\frac{1}{2}= \pm \frac{\sqrt{3}}{2}$
$x=-\frac{1}{2} \pm \frac{\sqrt{3}}{2}$
6. $y=12+4 x-x^{2}$

$$
=(6-x)(2+x)
$$

When $x=0, y=12$
When $y=0, x=6$ or -2

7. (i) $x^{\frac{2}{3}}+x^{\frac{1}{3}}-6=0$

Let $y=x^{\frac{1}{3}}$

$$
\begin{aligned}
& y^{2}+y-6=0 \\
& (y+3)(y-2)=0 \\
& y=-3 \text { or } 2 \\
& x=y^{3} \Rightarrow x=-27 \text { or } 8
\end{aligned}
$$

(ii) $x^{4}+3 x^{2}-10=0$

Let $y=x^{2}$
$y^{2}+3 y-10=0$
$(y+5)(y-2)=0$
$y=-5$ or 2
$x=\sqrt{y} \Rightarrow x= \pm \sqrt{2}$

Edexcel AS Maths Quadratics Assessment solutions

8. Using Pythagoras' theorem: $(2 x+1)^{2}=x^{2}+3^{2}$

$$
\begin{aligned}
& 4 x^{2}+4 x+1=x^{2}+9 \\
& 3 x^{2}+4 x-8=0 \\
& x=\frac{-4 \pm \sqrt{4^{2}-4 \times 3 \times-8}}{2 \times 3}=1.10 \text { or }-2.43
\end{aligned}
$$

Since x is a length, it must be positive, so $x=1.10$ (3 s.f.)
9. The highest point is $(2,5)$ so the equation of the path is of the form

$$
\begin{aligned}
y & =5-a(x-2)^{2} \\
& =5-a x^{2}+4 a x-4 a \\
& =5-4 a+4 a x-a x^{2}
\end{aligned}
$$

comparing with $y=h+k x-\frac{1}{2} x^{2}$ gives $a=\frac{1}{2}$

$$
\begin{aligned}
& k=4 a=2 \\
& h=5-4 a=5-2=3
\end{aligned}
$$

When the ball hits the ground, $3+2 x-\frac{1}{2} x^{2}=0$

$$
\begin{gathered}
x^{2}-4 x-6=0 \\
x=\frac{4 \pm \sqrt{4^{2}-4 \times 1 \times-6}}{2}=5.16 \text { or }-2.32
\end{gathered}
$$

The value of x must be positive, so $x=5.16$.

