Edexcel AS Mathematics Polynomials

Topic assessment

1. (i) Add $\left(x^{3}+2 x^{2}-3 x+1\right)$ to $\left(2 x^{3}+5 x-3\right)$
(ii) Subtract $2 x^{3}-3 x^{2}+x-2$ from $\left(x^{4}+x^{3}-2 x^{2}+1\right)$
(iii) Multiply $\left(x^{3}+4 x^{2}-2 x+3\right)$ by $(2 x-1)$
(iv) Multiply $\left(x^{2}+2 x+3\right)$ by $\left(x^{2}-x+1\right)$
(v) Divide $\left(2 x^{3}-x^{2}+3 x-4\right)$ by $(x-1)$
2. $(x-3)$ is a factor of the polynomial $x^{3}+a x^{2}-5 x+6$.

Find the value of a.
3. (i) Solve the equation $2 x^{3}-x^{2}-5 x-2=0$.
(ii) Sketch the graph of $y=2 x^{3}-x^{2}-5 x-2$.
4. (i) Show that $(x-3)$ is a factor of $6 x^{3}-17 x^{2}-5 x+6$.
(ii) Hence solve the equation $6 x^{3}-17 x^{2}-5 x+6=0$.
(iii) Sketch the graph of $y=6 x^{3}-17 x^{2}-5 x+6$.
5. $\mathrm{f}(x)=x^{3}+a x^{2}+b x+8$.
(i) ($x-1$) and $(x-2)$ are factors of $\mathrm{f}(x)$.

Find the values of a and b.
(ii) Factorise $\mathrm{f}(x)$ completely and hence solve the equation $\mathrm{f}(x)=0$.
(ii) Sketch the graph of $y=\mathrm{f}(x)$.
6. (i) Sketch the curve $y=(2 x+1)(x-2)^{2}$.

Draw the line $y=x+2$ on your graph and show that it intersects with the curve at the point $x=1$.
(iii) Show that the x-coordinates of the points where the line and the curve intersect satisfy the equation $2 x^{3}-7 x^{2}+3 x+2=0$.
(iv) Find the x-coordinates of the other two points of intersection of the line and the curve, giving your answers to 2 decimal places.

Edexcel AS Maths Polynomials Assessment solutions

Solutions to topic assessment

1. (i)

$$
\begin{array}{cccc}
x^{3} & +2 x^{2} & -3 x & +1 \\
2 x^{3} & & +5 x & -3 \\
\hline 3 x^{3} & +2 x^{2} & +2 x & -2
\end{array}
$$

(ii)

$$
\begin{array}{ccccc}
x^{4} & x^{3} & -2 x^{2} & & +1 \\
- & 2 x^{3} & -3 x^{2} & +x & -2 \\
\hline x^{4} & -x^{3} & +x^{2} & -x & +3
\end{array}
$$

(iii) $\left(x^{3}+4 x^{2}-2 x+3\right)(2 x-1)=2 x^{4}+8 x^{3}-4 x^{2}+6 x$

$$
\begin{array}{cccc}
& -x^{3} & -4 x^{2} & +2 x
\end{array}-3 .
$$

(iv) $\quad\left(x^{2}+2 x+3\right)\left(x^{2}-x+1\right)=x^{4}+2 x^{3}+3 x^{2}$

$$
\begin{array}{ccccc}
-x^{3} & -2 x^{2} & -3 x & \\
& & x^{2} & +2 x & +3 \\
\hline x^{4} & +x^{3} & +2 x^{2} & -x & +3
\end{array}
$$

(v) $2 x^{3}-x^{2}+3 x-4=(x-1)\left(2 x^{2}+x+4\right)$

$$
\frac{2 x^{3}-x^{2}+3 x-4}{x-1}=2 x^{2}+x+4
$$

2. $f(x)=x^{3}+a x^{2}-5 x+6$

By the factor theorem, $(x-3)$ is a factor $\Rightarrow f(3)=0$

$$
\begin{aligned}
& \Rightarrow 27+9 a-15+6=0 \\
& \Rightarrow 9 a=-18 \\
& \Rightarrow a=-2
\end{aligned}
$$

3. (i) $f(x)=2 x^{3}-x^{2}-5 x-2$

$$
f(1)=2-1-5-2=-6
$$

$$
f(-1)=-2-1+5-2=0
$$ so by the factor theorem, $(x+1)$ is a factor.

Edexcel AS Maths Polynomials Assessment solutions

$2 x^{3}-x^{2}-5 x-2=0$
$(x+1)\left(2 x^{2}-3 x-2\right)=0$
$(x+1)(x-2)(2 x+1)=0$
$x=-1$ or $x=2$ or $x=-\frac{1}{2}$
(ii) From (i), the graph of $y=2 x^{3}-x^{2}-5 x-2$ crosses the x-axis at $(-1,0),(2,0)$ and $\left(-\frac{1}{2}, 0\right)$.
From the equation, the graph crosses the y-axis at $(0,-2)$.

4. (i) $f(x)=6 x^{3}-17 x^{2}-5 x+6$
$f(3)=162-153-15+6=0$
so by the factor theorem $(x-3)$ is a factor.
(ii) $6 x^{3}-17 x^{2}-5 x+6=0$
$(x-3)\left(6 x^{2}+x-2\right)=0$
$(x-3)(2 x-1)(3 x+2)=0$
$x=3$ or $x=\frac{1}{2}$ or $x=-\frac{2}{3}$
(iii) From (ii), the graph crosses the x-axis at $(3,0),\left(\frac{1}{2}, 0\right)$ and $\left(-\frac{2}{3}, 0\right)$.

From the equation, it crosses the y-axis at $(0,6)$.

Edexcel AS Maths Polynomials Assessment solutions

5. (i) $f(x)=x^{3}+a x^{2}+b x+8$

$$
\begin{aligned}
(x-1) \text { is a factor } & \Rightarrow f(1)=0 \\
& \Rightarrow 1+a+b+8=0 \\
& \Rightarrow a+b=-9 \\
(x-2) \text { is a factor } & \Rightarrow f(2)=0 \\
& \Rightarrow 8+4 a+2 b+8=0 \\
& \Rightarrow 2 a+b=-8
\end{aligned}
$$

subtracting $\Rightarrow a=1, b=-10$
(ii) Two factors are $(x-1)(x-2)$ so $\left(x^{2}-3 x+2\right)$ is a quadratic factor. $f(x)=x^{3}+x^{2}-10 x+8$
$=\left(x^{2}-3 x+2\right)(x+4)$
$=(x-1)(x-2)(x+4)$
Roots of equation are $x=1,2,-4$
(i iii) From ($i i$), the graph cuts the x-axis at $(2,0),(1,0)$ and $(-4,0)$. From the equation, the graph cuts the y-axis at $(0,8)$.

6. (i)

Edexcel AS Maths Polynomials Assessment solutions

When $x=1$, for the curve $y=(2 \times 1+1)(1-2)^{2}=3(-1)^{2}=3$ for the line $y=x+2=1+2=3$.
so both the line and the curve pass through $(1,3)$ and therefore they intersect when $x=1$.
(ii) At intersections, $(2 x+1)(x-2)^{2}=x+2$

$$
\begin{aligned}
& (2 x+1)\left(x^{2}-4 x+4\right)=x+2 \\
& 2 x^{3}+x^{2}-8 x^{2}-4 x+8 x+4=x+2 \\
& 2 x^{3}-7 x^{2}+3 x+2=0
\end{aligned}
$$

(iii) From above, $x=1$ is a root, so $(x-1)$ is a factor.

$$
\begin{aligned}
& 2 x^{3}-7 x^{2}+3 x+2=0 \\
& (x-1)\left(2 x^{2}-5 x-2\right)=0
\end{aligned}
$$

The other two x-coordinates are the roots of $2 x^{2}-5 x-2=0$

$$
\begin{aligned}
x & =\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-2}}{2 \times 2} \\
& =-0.35 \text { and } 2.85
\end{aligned}
$$

