Edexcel AS Mathematics Polynomials

Topic assessment

1.	(i)	Add $(x^3 + 2x^2 - 3x + 1)$ to $(2x^3 + 5x - 3)$	[2]
	(ii)	Subtract $2x^3 - 3x^2 + x - 2$ from $(x^4 + x^3 - 2x^2 + 1)$	[2]
	(iii)	Multiply $(x^3 + 4x^2 - 2x + 3)$ by $(2x-1)$	[3]
	(iv)	Multiply $(x^2 + 2x + 3)$ by $(x^2 - x + 1)$	[3]
	(v)	Divide $(2x^3 - x^2 + 3x - 4)$ by $(x - 1)$	[3]
2.			
	Find	the value of <i>a</i> .	[2]
3.	(i)	Solve the equation $2x^3 - x^2 - 5x - 2 = 0$.	[4]
	(ii)	Sketch the graph of $y = 2x^3 - x^2 - 5x - 2$.	[3]
4			513
4.	(i)	Show that $(x-3)$ is a factor of $6x^3 - 17x^2 - 5x + 6$.	[1]
	(ii)	Hence solve the equation $6x^3 - 17x^2 - 5x + 6 = 0$.	[2]
	(iii)	Sketch the graph of $y = 6x^3 - 17x^2 - 5x + 6$.	[3]
5.	f(x)	$=x^3+ax^2+bx+8.$	
	(i)	(x-1) and $(x-2)$ are factors of $f(x)$.	
		Find the values of <i>a</i> and <i>b</i> .	[4]
	(ii)	Factorise $f(x)$ completely and hence solve the equation $f(x) = 0$.	[3]
	(ii)	Sketch the graph of $y = f(x)$.	[3]
6.	(i)	Sketch the curve $y = (2x+1)(x-2)^2$.	
		Draw the line $y = x + 2$ on your graph and show that it intersects with th	e
		curve at the point $x = 1$.	[5]
	(iii)	Show that the <i>x</i> -coordinates of the points where the line and the curve	
		intersect satisfy the equation $2x^3 - 7x^2 + 3x + 2 = 0$.	[3]
	(iv)	Find the x-coordinates of the other two points of intersection of the line a	and
		the curve, giving your answers to 2 decimal places.	[4]

Total 50 marks

Solutions to topic assessment

1. (i)
$$x^{3} + 2x^{2} - 3x + 1$$

$$\frac{2x^{3} + 5x - 3}{3x^{3} + 2x^{2} + 2x - 2}$$
(ii) $x^{4} + x^{3} - 2x^{2} + 1$

$$-\frac{2x^{3} - 3x^{2} + x - 2}{x^{4} - x^{3} + x^{2} - x + 3}$$
(iii) $(x^{3} + 4x^{2} - 2x + 3)(2x - 1) = 2x^{4} + 8x^{3} - 4x^{2} + 6x$

$$-\frac{-x^{3} - 4x^{2} + 2x - 3}{2x^{4} + 77x^{3} - 8x^{2} + 8x - 3}$$
(iv) $(x^{2} + 2x + 3)(x^{2} - x + 1) = x^{4} + 2x^{3} + 3x^{2}$

$$-x^{3} - 2x^{2} - 3x$$
(iv) $(x^{2} + 2x + 3)(x^{2} - x + 1) = x^{4} + 2x^{3} + 3x^{2}$

$$-x^{3} - 2x^{2} - 3x$$
(iv) $(x^{2} + 2x + 3)(x^{2} - x + 1) = x^{4} + 2x^{3} + 3x^{2}$

$$-x^{3} - 2x^{2} - 3x$$
(iv) $(x^{2} + 2x + 3)(x^{2} - x + 1) = x^{4} + 2x^{3} + 3x^{2}$

$$-x^{3} - 2x^{2} - 3x$$
(iv) $(x^{2} + 2x + 3)(x^{2} - x + 1) = x^{4} + 2x^{3} + 3x^{2}$

$$-x^{3} - 2x^{2} - 3x$$
(iv) $(x^{2} + 2x + 3)(x^{2} - x + 1) = x^{4} + 2x^{3} + 3x^{2}$

$$-x^{3} - 2x^{2} - 3x$$
(iv) $(x^{2} + 2x + 3)(x^{2} - x + 1) = x^{4} + 2x^{3} + 3x^{2}$

$$-x^{3} - 2x^{2} - 3x$$
(iv) $(x^{2} + 2x + 3)(x^{2} - x + 1) = x^{4} + 2x^{3} + 3x^{2}$

(v)
$$2x^{3} - x^{2} + 3x - 4 = (x - 1)(2x^{2} + x + 4)$$
$$\frac{2x^{3} - x^{2} + 3x - 4}{x - 1} = 2x^{2} + x + 4$$
[3]

2.
$$f(x) = x^{3} + ax^{2} - 5x + 6$$

By the factor theorem, $(x - 3)$ is a factor $\Rightarrow f(3) = 0$
 $\Rightarrow 27 + 9a - 15 + 6 = 0$
 $\Rightarrow 9a = -18$
 $\Rightarrow a = -2$
[2]

3. (i)
$$f(x) = 2x^3 - x^2 - 5x - 2$$

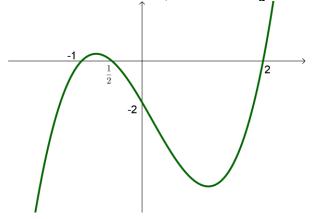
 $f(1) = 2 - 1 - 5 - 2 = -6$
 $f(-1) = -2 - 1 + 5 - 2 = 0$
so by the factor theorem, $(x + 1)$ is a factor.

$$2x^{3} - x^{2} - 5x - 2 = 0$$

(x+1)(2x² - 3x - 2) = 0
(x+1)(x-2)(2x+1) = 0
x = -1 or x = 2 or x = -\frac{1}{2}

(ii) From (i), the graph of $y = 2x^3 - x^2 - 5x - 2$ crosses the x-axis at (-1, 0), (2, 0) and $(-\frac{1}{2}, 0)$.

From the equation, the graph crosses the y-axis at (0, -2).



[1]

[2]

[4]

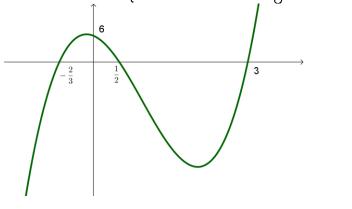
4. (i)
$$f(x) = 6x^3 - 17x^2 - 5x + 6$$

 $f(3) = 162 - 153 - 15 + 6 = 0$
so by the factor theorem $(x - 3)$ is a factor.

(ii)
$$6x^3 - 17x^2 - 5x + 6 = 0$$

 $(x - 3)(6x^2 + x - 2) = 0$
 $(x - 3)(2x - 1)(3x + 2) = 0$
 $x = 3 \text{ or } x = \frac{1}{2} \text{ or } x = -\frac{2}{3}$

(iii) From (ii), the graph crosses the x-axis at (3, 0), $(\frac{1}{2}, 0)$ and $(-\frac{2}{3}, 0)$. From the equation, it crosses the y-axis at (0, 6).



[3]

5. (i)
$$f(x) = x^{3} + ax^{2} + bx + g$$

$$(x-1) \text{ is a factor } \Rightarrow f(1) = 0$$

$$\Rightarrow 1 + a + b + g = 0$$

$$\Rightarrow a + b = -9$$

$$(x-2) \text{ is a factor } \Rightarrow f(2) = 0$$

$$\Rightarrow g + 4a + 2b + g = 0$$

$$\Rightarrow 2a + b = -2$$
Subtracting $\Rightarrow a = 1, b = -10$
[4]
(ii) Two factors are $(x-1)(x-2)$ so $(x^{2} - 3x + 2)$ is a quadratic factor.

$$f(x) = x^{3} + x^{2} - 10x + g$$

$$= (x^{2} - 3x + 2)(x + 4)$$

$$= (x-1)(x-2)(x + 4)$$
Roots of equation are $x = 1, 2, -4$
[3]
(iii) From (ii), the graph cuts the x-axis at (2, 0), (1, 0) and (-4, 0).
From the equation, the graph cuts the y-axis at (0, g).

$$4$$
[3]
6. (i)
$$y = x + 2$$

$$y = x + 2$$

$$y = x + 2$$

$$y = (2x + 1) (x - 2)^{2}$$

$$y = (2x + 1) (x - 2)^{2}$$

When x = 1, for the curve $y = (2 \times 1 + 1)(1 - 2)^2 = 3(-1)^2 = 3$ for the line y = x + 2 = 1 + 2 = 3. So both the line and the curve pass through (1, 3) and therefore they

So both the line and the curve pass through (1, 3) and therefore they intersect when x = 1. [5]

(ii) At intersections,
$$(2x+1)(x-2)^2 = x+2$$

 $(2x+1)(x^2-4x+4) = x+2$
 $2x^3 + x^2 - 8x^2 - 4x + 8x + 4 = x+2$
 $2x^3 - 7x^2 + 3x + 2 = 0$
[3]

(iii) From above,
$$x = 1$$
 is a root, so $(x - 1)$ is a factor.
 $2x^{3} - 7x^{2} + 3x + 2 = 0$
 $(x - 1)(2x^{2} - 5x - 2) = 0$
The other two x-coordinates are the roots of $2x^{2} - 5x - 2 = 0$
 $x = \frac{5 \pm \sqrt{(-5)^{2} - 4 \times 2 \times -2}}{2 \times 2}$
 $= -0.35$ and 2.85
[4]

5 of 5 integralmaths.org