Edexcel AS Maths Graphs and transformations

Topic assessment

Do not use a graphical calculator for this test.

1. Sketch the following graphs on separate diagrams.
(i) $y=x^{3}$
(ii) $y=(x+1)^{3}$
(iii) $y=x^{3}-2$
2. (i) Sketch the graph $y=\frac{1}{x}$.
(ii) Hence sketch the graph of $y=\frac{1}{x+2}$ on a separate diagram. Show the coordinates of any points where the graph cuts the coordinate axes.
(iii) Write down the equations of the asymptotes of the graph in (ii).
3. (i) Given that $\mathrm{f}(x)=(x-2)(x-1)(x+2)$, sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}(x-1)$ on the same axes.
(ii) Write down the equation of the graph $y=\mathrm{f}(x-1)$ in factorised form.
(ii) Use algebra to find the x-coordinates of the points where the graphs intersect.
4. Given that $\mathrm{g}(x)=x^{2}-2 x+4$,
(i) Find the equation of the curve obtained by translating the curve $y=\mathrm{g}(x)$ horizontally 1 unit to the left.
(ii) Find the equation of the curve obtained by stretching the curve $y=\mathrm{g}(x)$ parallel to the y-axis with scale factor 2 .
(iii) Find the equation of the curve obtained by reflecting the curve $y=\mathrm{g}(x)$ in the y-axis.
5. The diagram below shows the graph $y=\mathrm{f}(x)$, which has a turning point at $(-2,1)$ and crosses the y-axis at $(0,5)$.

Sketch, on separate diagrams, each of the following graphs, showing the coordinates of the turning point and the point at which the graph crosses the y-axis in each case.
(i) $y=3 \mathrm{f}(x)$
(ii) $y=\mathrm{f}\left(\frac{1}{2} x\right)$
(iii) $y=\mathrm{f}(x)+1$
(iv) $y=-\mathrm{f}(x)$

Edexcel AS Maths Graphs Assessment solutions

6. (i) Sketch the graph of $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=(x+1)^{2}(2-x)$.

Show the coordinates of the points where the graph cuts the coordinate axes.
(ii) Hence sketch the graph of $y=\mathrm{f}(2 x)$, on a separate diagram, showing the coordinates of the points where the graph cuts the coordinate axes.
(iii) Find the equation of the graph $y=\mathrm{f}(2 x)$ in the form

$$
\begin{equation*}
y=A x^{3}+B x^{2}+C x+D . \tag{3}
\end{equation*}
$$

7. Sketch the following graphs for $-360^{\circ} \leq x \leq 360^{\circ}$.
(i) $y=\cos \frac{1}{2} x$[3]
(ii) $y=-3 \cos x$ [3]
(iii) $y=\tan (-x)$ [3]
(iv) $y=\sin \left(x+30^{\circ}\right)$ [3]

Edexcel AS Maths Graphs Assessment solutions

Solutions to topic assessment

1. (i) $y=x^{3}$

(ii) $y=(x+1)^{3}$

The graph of $y=x$ is translated 1 unit to the left.

(iii) $y=x^{3}-2$

The graph of $y=x$ is translated 2 units downwards.

Edexcel AS Maths Graphs Assessment solutions
2. (i) $y=\frac{1}{x}$

(ii) To obtain $y=\frac{1}{x+2}$, the graph of $y=\frac{1}{x}$ is translated 2 units to the left. When $x=0, y=\frac{1}{2}$.

(iii) The asymptotes are $x=-2$ and $y=0$.
3. (i) $y=(x-2)(x-1)(x+2)$

When $x=0, y=4$
When $y=0, x=-2,1$ or 2
$y=f(x-1)$ is a translation of the above graph horizontally through 1 unit to the right, so it intersects the x-axis at $-1,2$ and 3 .

Edexcel AS Maths Graphs Assessment solutions
(ii) $y=f(x-1)$

$$
\begin{aligned}
& =(x-1-2)(x-1-1)(x-1+2) \\
& =(x-3)(x-2)(x+1)
\end{aligned}
$$

(iii) At intersections, $(x-2)(x-1)(x+2)=(x-3)(x-2)(x+1)$

$$
\begin{aligned}
& (x-2)(x-1)(x+2)-(x-3)(x-2)(x+1)=0 \\
& (x-2)[(x-1)(x+2)-(x-3)(x+1)]=0 \\
& (x-2)\left[\left(x^{2}+x-2-\left(x^{2}-2 x-3\right)\right]=0\right. \\
& (x-2)(3 x+1)=0 \\
& x=2 \text { or }-\frac{1}{3}
\end{aligned}
$$

4. (i) $y=g(x+1)$

$$
\begin{aligned}
& =(x+1)^{2}-2(x+1)+4 \\
& =x^{2}+2 x+1-2 x-2+4 \\
& =x^{2}+3
\end{aligned}
$$

(ii) $y=2 g(x)$

$$
\begin{aligned}
& =2\left(x^{2}-2 x+4\right) \\
& =2 x^{2}-4 x+8
\end{aligned}
$$

(iii) $y=g(-x)$

$$
\begin{aligned}
& =(-x)^{2}-2(-x)+4 \\
& =x^{2}+2 x+4
\end{aligned}
$$

5. (i) $y=3 f(x)$

The graph of $y=f(x)$ is stretched in the y direction, scale factor 3 .

Edexcel AS Maths Graphs Assessment solutions
(ii) $y=f\left(\frac{1}{2} x\right)$

The graph of $y=f(x)$ is stretched in the x direction, scale factor 2 .

(iii) $y=f(x)+1$

The graph of $y=f(x)$ is translated 1 unit upwards.

(iv) $y=-f(x)$

The graph of $y=f(x)$ is reflected in the y-axis.

6. (i) $y=(x+1)^{2}(2-x)$

When $x=0, y=2$
When $y=0, x=-1$ (repeated) or 2 .
When x is large and positive, y is large and negative.
When x is large and negative, y is large and positive.

Edexcel AS Maths Graphs Assessment solutions

(ii) The graph of $y=f(x)$ is stretched in the x direction, scale factor $\frac{1}{2}$.

(iiii) $y=(2 x+1)^{2}(2-2 x)$

$$
\begin{aligned}
& =\left(4 x^{2}+4 x+1\right)(2-2 x) \\
& =8 x^{2}+8 x+2-8 x^{3}-8 x^{2}-2 x \\
& =-8 x^{3}+6 x+2
\end{aligned}
$$

7. (i) The graph of $y=\cos x$ is stretched, scale factor 2 , parallel to the x axis.

(ii) The graph of $y=\cos x$ is stretched, scale factor -3 , parallel to the y-axis.

Edexcel AS Maths Graphs Assessment solutions

[3]
(iii) The graph of $y=\tan x$ is reflected in the y-axis.

(iv) The graph of $y=\sin x$ is translated through 30° to the left.

