

[3]

[2]

[4]

Topic assessment

Do not use a graphical calculator for this test.

1. Sketch the following graphs on separate diagrams.

(i) $y = x^3$	[1]
(ii) $y = (x+1)^3$	[2]
(iii) $y = x^3 - 2$	[2]

- 2. (i) Sketch the graph $y = \frac{1}{x}$. [2]
 - (ii) Hence sketch the graph of $y = \frac{1}{x+2}$ on a separate diagram. Show the coordinates of any points where the graph cuts the coordinate axes.
 - (iii) Write down the equations of the asymptotes of the graph in (ii).
- 3. (i) Given that f(x) = (x-2)(x-1)(x+2), sketch the graphs of y = f(x) and y = f(x-1) on the same axes. [4]
 - (ii) Write down the equation of the graph y = f(x-1) in factorised form. [1]
 - (ii) Use algebra to find the *x*-coordinates of the points where the graphs intersect.
- 4. Given that $g(x) = x^2 2x + 4$,
 - (i) Find the equation of the curve obtained by translating the curve y = g(x) horizontally 1 unit to the left. [2]
 (ii) Find the unit of the left. [2]
 - (ii) Find the equation of the curve obtained by stretching the curve y = g(x)parallel to the *y*-axis with scale factor 2. [2]
 - (iii) Find the equation of the curve obtained by reflecting the curve y = g(x) in the y-axis. [2]
- 5. The diagram below shows the graph y = f(x), which has a turning point at (-2, 1) and crosses the y-axis at (0, 5).

Sketch, on separate diagrams, each of the following graphs, showing the coordinates of the turning point and the point at which the graph crosses the *y*-axis in each case.

(i) $y = 3f(x)$	[3]
(ii) $y = f(\frac{1}{2}x)$	[3]
(iii) $y = f(x) + 1$	[3]
(iv) $y = -f(x)$	[3]

6.	(i)	Sketch the graph of $y = f(x)$, where $f(x) = (x+1)^2(2-x)$.	
		Show the coordinates of the points where the graph cuts the coordinate	
		axes.	[3]
	(ii)	Hence sketch the graph of $y = f(2x)$, on a separate diagram, showing the	
		coordinates of the points where the graph cuts the coordinate axes.	[3]
	(iii)) Find the equation of the graph $y = f(2x)$ in the form	
		$y = Ax^3 + Bx^2 + Cx + D.$	[3]
7.	Ske	etch the following graphs for $-360^\circ \le x \le 360^\circ$.	
	(i)	$y = \cos \frac{1}{2} x$	[3]

- (ii) $y = -3\cos x$ [3] (iii) $y = \tan(-x)$ [3]
- (iv) $y = \sin(x+30^{\circ})$ [3]

Total 60 marks

Solutions to topic assessment

[2]

3. (i) y = (x-2)(x-1)(x+2)When x = 0, y = 4When y = 0, x = -2, 1 or 2

y = f(x - 1) is a translation of the above graph horizontally through 1 unit to the right, so it intersects the x-axis at -1, 2 and 3.

[4]

(ii)
$$y = f(x-1)$$

= $(x-1-2)(x-1-1)(x-1+2)$
= $(x-3)(x-2)(x+1)$

[1]
(iii) At intersections,
$$(x-2)(x-1)(x+2) = (x-3)(x-2)(x+1)$$

 $(x-2)(x-1)(x+2) - (x-3)(x-2)(x+1) = 0$
 $(x-2)[(x-1)(x+2) - (x-3)(x+1)] = 0$
 $(x-2)[(x^2 + x - 2 - (x^2 - 2x - 3)] = 0$
 $(x-2)(3x+1) = 0$
 $X = 2 \text{ or } -\frac{1}{3}$
[4]

4. (i)
$$y = g(x+1)$$

 $= (x+1)^2 - 2(x+1) + 4$
 $= x^2 + 2x + 1 - 2x - 2 + 4$
 $= x^2 + 3$
[2]
(ii) $y = 2g(x)$

$$(x) \quad y = 2y(x)$$

= 2(x² - 2x + 4)
= 2x² - 4x + 8

(iii)
$$y = g(-x)$$

= $(-x)^2 - 2(-x) + 4$
= $x^2 + 2x + 4$ [2]

5. (i)
$$y = 3f(x)$$

The graph of $y = f(x)$ is stretched in the y direction, scale factor 3.

[3]

(iii)
$$y = (2x+1)^2(2-2x)$$

= $(4x^2+4x+1)(2-2x)$
= $8x^2+8x+2-8x^3-8x^2-2x$
= $-8x^3+6x+2$

[3]

[3]

[3]

7. (i) The graph of $y = \cos x$ is stretched, scale factor 2, parallel to the x axis.

(ii) The graph of $y = \cos x$ is stretched, scale factor -3, parallel to the y-axis.

(iii) The graph of $y = \tan x$ is reflected in the y-axis.

[2]

(iv) The graph of $y = \sin x$ is translated through 30° to the left.

